SciELO - Scientific Electronic Library Online

 
vol.44 issue1Rigidity of the Stable Norm on ToriMaximal Virtual Schottky Groups: Explicit Constructions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.44 no.1 Bogotá Jan./June 2010

 

A Variational Characterization of the Fucik Spectrum and Applications

Una caracterización variacional del espectro de Fucik y aplicaciones

ALFONSO CASTRO1, CHEN CHANG2

1Harvey Mudd College, Claremont, USA. Email: castro@math.hmc.edu
2UTSA, San Antonio, USA. Email: chen.chang@utsa.edu


Abstract

We characterize the \it Fucik spectrum (see [7]) of a class selfadjoint operators. Our characterization relies on Lyapunov-Schmidt reduction arguments. We use this characterization to establish the existence of solutions for a semilinear wave equation. This work has been motivated by the authors results in [4] where one dimensional second order ordinary differential equations are studied.

Key words: Fucik spectrum, Saddle point principle, Asymptotic behavior.


2000 Mathematics Subject Classification: 35J20, 35J25, 35J60.

Resumen

Se caracteriza el espectro de Fucik (véase [7]) de una clase de operadores autoadjuntos. Basamos esta caracterización en el método de reducción de Lyapunov-Schmidt. Usamos esta caracterización para demostrar la existencia de soluciones a una ecuación de onda semilineal. Este trabajo ha sido motivado por los resultados de los autores en [4] donde se estudian ecuaciones diferenciales ordinarias de segundo orden.

Palabras clave: Espectro de Fucik, principio de puntos de silla, comportamiento asintótico.


Texto completo disponible en PDF


References

[1] A. K. Ben-Naoum, C. Fabry, and D. Smets, `Resonance with respect to the Fucik Spectrum´, Electron. J. Differential Equations, 37 (2000), 1-21.         [ Links ]

[2] H. Brezis and L. Nirenberg, `Forced Vibrations for a Nonlinear Wave Equation´, Comm. on Pure and Applied Mathematics 31, (1978), 1-30.         [ Links ]

[3] A. Castro, `Hammerstein Integral Equations with Indefinite Kernel´, Math. and Math. Sci. 1, (1978), 187-201.         [ Links ]

[4] A. Castro and C. Chang, `Asymptotic Behavior of the Potential and Existence of a Periodic Solution for a Second Order Differential Equation´, Applicable Analysis 82, 11 (2003), 1029-1038.         [ Links ]

[5] M. Cuesta and J. P. Gossez, `A Variational Approach to Nonresonance with Respect to the Fucik Spectrum´, Nonlinear Analysis T.M.A. 19, 5 (1992), 487-500.         [ Links ]

[6] M. Cuesta, D. G. de Figueiredo, and J. P. Gossez, `The Beginning of the Fucik Spectrum for the p-Laplacian´, J. Differential Equations 159, 1 (1999), 212-238.         [ Links ]

[7] S. Fucik, `Boundary Value Problems with Jumping Nonlinearities´, Casopis Pest. Mat. 101, (1976), 69-87.         [ Links ]

[8] E. Massa, `On a Variational Characterization of a Part of the Fucik Spectrum and a Superlinear Equation for the Neumann p-Laplacian in Dimension One´, Adv. Differential Equations 9, 5-6 (2004a), 699-720.         [ Links ]

[9] E. Massa, `On a Variational Characterization of the Fucik Spectrum of the Laplacian and a Superlinear Sturm-Liouville Equation´, Proc. Roy. Soc. Edinburgh Sect. A 134, 3 (2004b), 557-577.         [ Links ]

[10] E. Massa and B. Ruf, `On the Fucik Spectrum for Elliptic Systems´, Topol. Methods Nonlinear Analysis 27, 2 (2006), 195-228.         [ Links ]

[11] D. G. de Figueiredo and J. P. Gossez, `On the First Curve of the Fucik Spectrum of an Elliptic Operator´, Differential and Integral Equations 7, 5-6 (1994), 1285-1302.         [ Links ]

[12] D. G. de Figueiredo and B. Ruf, `On the Periodic Fucik Spectrum and a Superlinear Sturm-Liouville Equation´, Proc. Roy. Soc. Edinburgh Sect. A. 123, 1 (1993), 95-107.         [ Links ]

(Recibido en enero de 2009. Aceptado en abril de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n1a03,
    AUTHOR  = {Castro, Alfonso and Chang, Chen},
    TITLE   = {{A Variational Characterization of the Fucik Spectrum and Applications}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2010},
    volume  = {44},
    number  = {1},
    pages   = {23-40}
}

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License