SciELO - Scientific Electronic Library Online

 
vol.46 issue1A Mathematical Model on Mycobacterium tuberculosis Dynamics into the GranulomaOn Spectral Compactness of Von Neumann Regular Rings author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.46 no.1 Bogotá Jan./June 2012

 

Powers of Two in Generalized Fibonacci Sequences

Potencias de dos en sucesiones generalizadas de Fibonacci

JHON J. BRAVO1, FLORIAN LUCA2

1Universidad del Cauca, Popayán, Colombia. Email: jbravo@unicauca.edu.co
2Universidad Nacional Autónoma de México, Morelia, México. Email: fluca@matmor.unam.mx


Abstract

The k-generalized Fibonacci sequence \big(Fn(k)\big)n resembles the Fibonacci sequence in that it starts with 0,…,0,1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we are interested in finding powers of two that appear in k-generalized Fibonacci sequences; i.e., we study the Diophantine equation Fn(k)=2m in positive integers n,k,m with k≥ 2.

Key words: Fibonacci numbers, Lower bounds for nonzero linear forms in logarithms of algebraic numbers.


2000 Mathematics Subject Classification: 11B39, 11J86.

Resumen

La sucesión k-generalizada de Fibonacci \big(Fn(k)\big)n se asemeja a la sucesión de Fibonacci, pues comienza con 0,…,0,1 (k términos) y a partir de ahí, cada término de la sucesión es la suma de los k precedentes. El interés en este artículo es encontrar potencias de dos que aparecen en sucesiones k-generalizadas de Fibonacci; es decir, se estudia la ecuación Diofántica Fn(k)=2m en enteros positivos n,k,m con k≥ 2.

Palabras clave: Números de Fibonacci, cotas inferiores para formas lineales en logaritmos de números algebraicos.


Texto completo disponible en PDF


References

[1] J. J. Bravo and F. Luca, 'k-Generalized Fibonacci Numbers with only one Distinct Digit', Preprint, (2011).         [ Links ]

[2] Y. Bugeaud, M. Mignotte, and S. Siksek, 'Classical and Modular Approaches to Exponential Diophantine Equations. I. Fibonacci and Lucas Perfect Powers', Ann. of Math. 163, 3 (2006), 969-1018.         [ Links ]

[3] R. D. Carmichael, 'On the Numerical Factors of the Arithmetic Forms αn\pm βn', The Annals of Mathematics 15, 1/4 (1913), 30-70.         [ Links ]

[4] G. P. Dresden, 'A Simplified Binet Formula for k-Generalized Fibonacci Numbers', Preprint, arXiv:0905.0304v1, (2009).         [ Links ]

[5] A. Dujella and A. Pethö, 'A Generalization of a Theorem of Baker and Davenport', Quart. J. Math. Oxford 49, 3 (1998), 291-306.         [ Links ]

[6] E. M. Matveev, 'An Explicit Lower Bound for a Homogeneous Rational Linear Form in the Logarithms of Algebraic Numbers', Izv. Math. 64, 6 (2000), 1217-1269.         [ Links ]

[7] D. A. Wolfram, 'Solving Generalized Fibonacci Recurrences', The Fibonacci Quarterly 36, 2 (1998), 129-145.         [ Links ]


(Recibido en noviembre de 2011. Aceptado en marzo de 2012)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv46n1a05,
AUTHOR = {Bravo, Jhon J. and Luca, Florian},
TITLE = {{Powers of Two in Generalized Fibonacci Sequences}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2012},
volume = {46},
number = {1},
pages = {67--79}
}

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License