SciELO - Scientific Electronic Library Online

 
vol.47 issue1Lazer-Solimini Equation with State-Dependent Delay: An Alternative DemonstrationKnaster's Type Continua and its Geometric Models author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.47 no.1 Bogotá Jan./June 2013

 

The Diagonal General Case of the Laguerre-Sobolev Type Orthogonal Polynomials

El caso general diagonal de los polinomios ortogonales de tipo Laguerre-Sobolev

HERBERT DUEÑAS1, JUAN C. GARCÍA2, LUIS E. GARZA3, ALEJANDRO RAMÍREZ4

1Universidad Nacional de Colombia, Bogotá, Colombia. Email: haduenasr@unal.edu.co
2Universidad Nacional de Colombia, Bogotá, Colombia. Email: jcgarciaar@unal.edu.co
3Universidad de Colima, Colima, México. Email: garzaleg@gmail.com
4Universidad de Colima, Colima, México. Email: grarceo@gmail.com


Abstract

We consider the family of polynomials orthogonal with respect to the Sobolev type inner product corresponding to the diagonal general case of the Laguerre-Sobolev type orthogonal polynomials. We analyze some properties of these polynomials, such as the holonomic equation that they satisfy and, as an application, an electrostatic interpretation of their zeros. We also obtain a representation of such polynomials as a hypergeometric function, and study the behavior of their zeros.

Key words: Orthogonal polynomials, Laguerre-Sobolev type polynomials, Laguerre Polynomials, Derivative of a Dirac Delta.


2000 Mathematics Subject Classification: 33C47, 42C05.

Resumen

Se considera la familia de los polinomios ortogonales con respecto a un producto interno de tipo Sobolev correspondiente al caso general diagonal de los polinomios ortogonales de tipo Laguerre-Sobolev. Se analizan algunas propiedades de estos polinomios tales como la ecuación holonómica que satisfacen y, como una aplicación de dicha ecuación, una interpretación electrostática de sus ceros. También se obtiene una representación de tales polinomios en términos de una función hipergeométrica, y se estudia el comportamiento de sus ceros.

Palabras clave: Polinomios ortogonales, polinomios de tipo Laguerre-Sobolev, polinomios de Laguerre, derivada de una Delta de Dirac.


Texto completo disponible en PDF


References

[1] M. Alfaro, G. López, and M. L. Rezola, 'Some Properties of Zeros of Sobolev-Type Orthogonal Polynomials', Journal of Computational and Applied Mathematics 69, (1996), 171-179.         [ Links ]

[2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, 'Encyclopedia of Mathematics and its Applications', 1999, Vol. 71, Cambridge University Press, Cambridge,         [ Links ] UK.

[3] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, USA,         [ Links ] 1978.

[4] H. Dueñas and F. Marcellán, 'The Laguerre-SoboleV-Type Orthogonal Polynomials', Journal of Approximation Theory 162, (2010), 421-440.         [ Links ]

[5] H. Dueñas and F. Marcellán, 'The Laguerre-Sobolev-Type Orthogonal Polynomials. Holonomic Equation and Electrostatic Interpretation', Rocky Mount. Jour. Math 41, 1 (2011), 95-131.         [ Links ]

[6] F. Grünbaum, 'Variations on a Theme of Heine and Stieltjes: An Electrostatic Interpretation of the Zeros of Certain Polynomials', Journal of Comp. and App. Math. 99, (1998), 189-194.         [ Links ]

[7] M. E. H. Ismail, 'An Electrostatic Model for Zeros of General Orthogonal Polynomials', Pacific J. Math 193, 2 (1999), 355-369.         [ Links ]

[8] M. E. H. Ismail, 'More on Electrostatics Model for Zeros Of Orthogonal Polynomials', Pacific. Journal. Of Numer. Funct. Anal. and Optimiz. 21, (2000), 191-204.         [ Links ]

[9] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, 'Encyclopedia of Mathematics and its Applications', 2005, Vol. 98, Cambridge University Press, Cambridge,         [ Links ] UK.

[10] R. Koekoek, Generalization of the Classical Laguerre Polynomials and some Q-Analogues, Doctoral Dissertation, Techn. Univ. of Delft, Delft, Netherlands,         [ Links ] 1990.

[11] F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González, 'Electrostatic Models for Zeros of Polynomials: Old, New, and some Open Problems', Journal of Comp. and App. Math. 207, 2 (2007), 258-272.         [ Links ]

[12] G. Szegö, Orthogonal Polynomials, 'Colloquium Publications - American Mathematical Society', 1975, Vol. 23, American Mathematical Society, Providence,         [ Links ] USA.


(Recibido en agosto de 2012. Aceptado en enero de 2013)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv47n1a04,
    AUTHOR  = {Dueñas, Herbert and García, Juan C. and Garza, Luis E. and Ramírez, Alejandro},
    TITLE   = {{The Diagonal General Case of the Laguerre-Sobolev Type Orthogonal Polynomials}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2013},
    volume  = {47},
    number  = {1},
    pages   = {39--66}
}