SciELO - Scientific Electronic Library Online

 
vol.48 issue2The Problem of the First Passage Time for Some Elliptic Pseudodifferential Operators Over the p-AdicsPower of Two--Classes in k--Generalized Fibonacci Sequences author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014

https://doi.org/10.15446/recolma.v48n2.54126 

Doi: http://dx.doi.org/10.15446/recolma.v48n2.54126

Multiplicative Relaxation with respect to Thompson's Metric

Relajamiento multiplicativo con respecto a la métrica de Thompson

GERD HERZOG1

1Karlsruhe Institute of Technology, Karlsruhe, Germany. Email: gerd.herzog2@kit.edu


Abstract

We give a condition so that certain mixed monotone mappings on function spaces have a contractive multiplicative relaxation with respect to Thompson's metric. The corresponding fixed point theorem can be applied to special types of integral equations, for example.

Key words: Thompson metric, Mixed monotone mappings, Fixed points, Contraction, Relaxation.


2000 Mathematics Subject Classification: 47H10, 47H07.

Resumen

Damos una condición para que ciertas aplicaciones monótonas mixtas sobre espacios de funciones tengan una relajación multiplicativa con respecto a las métricas de Thompson. El correspondiente teorema de punto fijo puede ser aplicado a tipos especiales de ecuaciones integrales, por ejemplo.

Palabras clave: Metrica de Thompson, aplicación mixta monotona, puntos fijos, contracción, relajación.


Texto completo disponible en PDF


References

[1] V. Berinde, Iterative Approximation of Fixed Points, Springer,         [ Links ] 2007.

[2] Y. Z. Chen, 'Thompson's Metric and Mixed Monotone Operators', J. Math. Anal. Appl. 177, (1993), 31-37.         [ Links ]

[3] D. Guo, 'Fixed Points of Mixed Monotone Operators With Applications', Appl. Anal. 31, (1988), 215-224.         [ Links ]

[4] D. Guo, Y. J. Cho, and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers,         [ Links ] 2004.

[5] C. Y. Huang, 'Fixed Point Theorems for a Class of Positive Mixed Monotone Operators', Math. Nachr. 285, (2012), 659-669.         [ Links ]

[6] D. H. Hyers, G. Isac, and T. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific,         [ Links ] 1997.

[7] M. D. Rus, The Method of Monotone Iterations for Mixed Monotone Operators, Ph.D. Thesis Summary, Babes-Bolyai University, Romania,         [ Links ] 2010.

[8] A. Thompson, 'On Certain Contraction Mappings in a Partially Ordered Vector Space', Proc. Am. Math. Soc. 14, (1963), 438-443.         [ Links ]


(Recibido en febrero de 2014. Aceptado en agosto de 2014)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv48n2a05,
    AUTHOR  = {Herzog, Gerd},
    TITLE   = {{Multiplicative Relaxation with respect to Thompson's Metric}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2014},
    volume  = {48},
    number  = {2},
    pages   = {211--217}
}