Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014
https://doi.org/10.15446/recolma.v48n2.54128
Doi: http://dx.doi.org/10.15446/recolma.v48n2.54128
1Universidad del Valle, Cali, Colombia. Email: carlos.a.gomez@correounivalle.edu.co
2Universidad Nacional Autónoma de México, Juriquilla, México. University of the Witwatersrand, Johannesburg, South Africa. Email: fluca@matmor.unam.mex
The k-generalized Fibonacci sequence \big(Fn(k)\big)n\geq 2-k is the linear recurrent sequence of order k, whose first k terms are 0, …, 0, 1 and each term afterwards is the sum of the preceding k terms. Two or more terms of a k-generalized Fibonacci sequence are said to be in the same power of two-class if the largest odd factors of the terms are identical. In this paper, we show that for each k\ge 2, there are only two kinds of power of two-classes in a k-generalized Fibonacci sequence: one, whose terms are all the powers of two in the sequence and the other, with a single term.
Key words: k--Generalized Fibonacci numbers, Lower bounds for nonzero linear forms in logarithms of algebraic numbers.
2000 Mathematics Subject Classification: 11B39, 11J86.
La sucesión k--generalizada de Fibonacci \big(Fn(k)\big)n\geq2-k es la sucesión lineal recurrente de orden k, cuyos primeros k términos son 0, …, 0, 1 y cada término posterior es la suma de los k términos precedentes. Se dice que dos o más términos de una sucesión k--generalizada de Fibonacci están en la misma clase de potencia de dos si los mayores factores impares de los términos son idénticos. En este trabajo, se muestra que para cada k\ge2, sólo hay dos tipos de clases de potencias de dos en una secuencia k--generalizada de Fibonacci: una, cuyos términos son todas las potencias de dos en la sucesión y la otra, con un único término.
Palabras clave: Números de Fibonacci k-generalizados, cotas inferiores para formas lineales en logaritmos de números algebraicos.
Texto completo disponible en PDF
References
[1] F. T. H. and C. Cooper, 'Some Identities for R-Fibonacci Numbers', Fibonacci Quart. 49, (2011), 158-164. [ Links ]
[2] J. Bravo and F. Luca, 'Powers of Two in Generalized Fibonacci Sequences', Rev. Colombiana Mat. 46, 1 (2012), 67-79. [ Links ]
[3]. R. D. Carmichael 'On the Numerical Factors of the Arithmetic Forms αn\pmβn' Annals of Mathematics15 1/4 (1913) 30-70 [ Links ]
[4] G. P. Dresden and Z. Du, 'A Simplified Binet Formula for k-Generalized Fibonacci Numbers', J. Integer Sequences 17, (2014). Article 14. [ Links ]4.7.
[5] A. Dujella and A. Pethö, 'A Generalization of a Theorem of Baker and Davenport', Quart. J. Math. Oxford 49, (1998), 291-306. [ Links ]
[6] L. K. Hua and Y. Wang, Applications of Number Theory to Numerical Analysis, Springer-Verlag, Berlin, Germany, [ Links ] 1981.
[7] R. Keskin and Z. Yosma, 'On Fibonacci and Lucas Numbers of the Form c x2', Journal of Integer Sequences 14, (2011), [ Links ] 1-12.
[8] E. M. Matveev, 'An Explicit Lower Bound for a Homogeneous Rational Linear Form in the Logarithms of Algebraic Numbers', Izv. Math. 64, (2000), 1217-1269. [ Links ]
[9] P. Ribenboim, 'Square-Classes of Fibonacci and Lucas Numbers', Portugaliae Math. 46, (1989), 159-175. [ Links ]
[10] D. A. Wolfram, 'Solving Generalized Fibonacci Recurrences', The Fibonacci Quarterly 36, (1998), 129-145. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a06,
AUTHOR = {Gómez, Carlos Alexis and Luca, Florian},
TITLE = {{Power of Two--Classes in \boldsymbol{k}--Generalized Fibonacci Sequences}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {219--234}
}