Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014
https://doi.org/10.15446/recolma.v48n2.54131
Doi: http://dx.doi.org/10.15446/recolma.v48n2.54131
1Universidad Industrial de Santander, Bucaramanga, Colombia. Email: jcam@matematicas.uis.edu.co
2Universidad Industrial de Santander, Bucaramanga, Colombia. Email: cristianggarcias@hotmail.com
3Universidad Nacional Autónoma de México, México D. F., México. Email: articops@gmail.com
A map f:X→ X, where X is a continuum, is said to be transitive if for each pair U and V of nonempty open subsets of X, there exists k∈N such that fk(U)∩ V≠\emptyset. In this paper, we show relationships between transitivity of f and its induced maps Cn(f) and Fn(f), for some n∈N. Also, we present conditions on X such that given a map f:X→ X, the induced function\break Cn(f):Cn(X)→ Cn(X) is not transitive, for any n∈N.
Key words: Transitivity, Induced map, Continua, Hyperspaces of continua, Symmetric products, Continuum of type λ, Dendrites.
2000 Mathematics Subject Classification: 54B20, 37B45, 54F50.
Una función continua f: X→ X, definida en un continuo X, se dice transitiva si para cada U y V abiertos diferentes del vacío de X, existe n∈ N, tal que fn(U)∩ V≠\emptyset. En este artículo mostramos relaciones entre la transitividad de f y las funciones inducidas Cn(f) y Fn(f), para alguna n∈N. Además, presentamos condiciones sobre X para que dada una función f:X→ X, la función inducida Cn(f):Cn(X)→ Cn(X) no sea transitiva, para ninguna n∈N.
Palabras clave: Transitividad, función inducida, continuos, hiperespacios de continuos, producto simétrico, continuos tipo λ, dendritas.
Texto completo disponible en PDF
References
[1] G. Acosta, A. Illanes, and H. Méndez-Lango, 'The Transitivity of Induced Maps', Topology and its Applications 156, 5 (2009), 1013-1033. [ Links ]
[2] J. Banks, 'Chaos for Induced Hyperspace Maps', Chaos, Solitons & Fractals, 25 (2005), 681-685. [ Links ]
[3] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, 'On Devaney's Definition of Chaos', Amer. Math. Monthly, 99 (1992), 332-334. [ Links ]
[4] R. Berglund and M. Bellekoop, 'On Intervals, Transitivity Chaos', Amer. Math. Monthly 4, 101 (1994), 353-355. [ Links ]
[5] L. S. Block and W. A. Coppel, Dynamics in One Dimension, 'Lecture Notes in Math.', (1992), Vol. 1513, Springer-Verlag, New York, [ Links ] USA.
[6] K. Borsuk and S. Ulam, 'On Symmetric Products of Topological Spaces', Bull. Amer. Math. Soc., 37 (1931), 875-882. [ Links ]
[7] J. Camargo, 'Some Relationships Between Induced Mappings', Topology Appl., 157 (2010), 2038-2047. [ Links ]
[8] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, [ Links ] 1989.
[9] G. Higuera, Funciones inducidas en productos simétricos, PhD thesis, Facultad de Ciencias, UNAM, México, México, [ Links ] 2009.
[10] A. Illanes and S. Nadler, Hyperspaces: Fundamentals and Recent Advances, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, [ Links ] 1999.
[11] E. S. T. Jr., 'Monotone Decompositions of Irreducible Continua', Dissertationes Math. (Rozprawy Mat.), 50 (1966), [ Links ] 1-74.
[12] K. Kuratowski, Topology, Vol. II, Academic Press, New York, USA, [ Links ] 1968.
[13] S. Macías, Topics on Continua, 'Pure and Applied Mathematics Series', (2005), Vol. 275, Chapman & Hall/CRC, Taylor & Francis Group. [ Links ]
[14] J. S. B. Nadler, Continuum Theory, An Introduction, 'Pure and Applied Mathematics', (1992), Vol. 158, Marcel Dekker, New York, [ Links ] USA.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a07,
AUTHOR = {Camargo, Javier and García, Cristian and Ramírez, Ártico},
TITLE = {{Transitivity of the Induced Map \boldsymbol{C_n(f)}}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {235--245}
}