SciELO - Scientific Electronic Library Online

 
vol.50 issue2Local unitary representations of the braid group and their applications to quantum computingAlgebraic Methods for Quantum Codes on Lattices author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.50 no.2 Bogotá July/Dec. 2016

https://doi.org/10.15446/recolma.v50n2.62213 

DOI: https://doi.org/10.15446/recolma.v50n2.62213

Solutions of the hexagon equation for abelian anyons

César Galindo, Nicolás Jaramillo1

1 Universidad de los Andes, Bogotá, Colombia. cn.galindo1116@uniandes.edu.co, n.jaramillo1163@uniandes.edu.co


Abstract

We address the problem of determining the obstruction to existence of solutions of the hexagon equation for abelian fusion rules and the classification of prime abelian anyons.

Keywords: Anyons, pointed fusion categories, modular categories, quadratic forms.


Mathematics Subject Classification: 16T05, 18D10.


Texto completo disponible en PDF


References

[1] Andrei Bernevig and Titus Neupert, Topological superconductors and category theory, arXiv preprint arXiv:1506.05805 (2015).         [ Links ]

[2] Parsa Hassan Bonderson, Non-abelian anyons and interferometry, Ph.D. thesis, California Institute of Technology, 2007.         [ Links ]

[3] D Bulacu, S Caenepeel, and B Torrecillas, The braided monoidal structures on the category of vector spaces graded by the klein group, Edinburgh Mathematical Society. Proceedings 54 (2011), no. 3, 613-641.         [ Links ]

[4] Shawn X Cui, César Galindo, Julia Yael Plavnik, and Zhenghan Wang, On gauging symmetry of modular categories, arXiv preprint arXiv:1510.03475 (2015).         [ Links ]

[5] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no. 1, 1-119. MR 2609644        [ Links ]

[6] Alan H. Durfee, Bilinear and quadratic forms on torsion modules, Advances in Math. 25 (1977), no. 2, 133-164. MR 0480333        [ Links ]

[7] Samuel Eilenberg and Saunders Mac Lane, On the groups of h(π, n). I, Ann. of Math. (2) 58 (1953), 55-106. MR 0056295        [ Links ]

[8] Samuel Eilenberg and Saunders Mac Lane, On the groups h(π, n). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49-139. MR 0065162        [ Links ]

[9] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. MR 2183279        [ Links ]

[10] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang, Topological quantum computation, Bulletin of the American Mathematical Society 40 (2003), no. 1, 31-38.         [ Links ]

[11] Hua-Lin Huang, Gongxiang Liu, and Yu Ye, The braided monoidal structures on a class of linear gr-categories, Algebras and Representation Theory 17 (2014), no. 4, 1249-1265.         [ Links ]

[12] A Yu Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303 (2003), no. 1, 2-30.         [ Links ]

[13] Alexei Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321 (2006), no. 1, 2-111.         [ Links ]

[14] Gongxiang Liu and Siu-Hung Ng, On total Frobenius-Schur indicators, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Contemp. Math., vol. 623, Amer. Math. Soc., Providence, RI, 2014, pp. 193-213. MR 3288628        [ Links ]

[15] Geoffrey Mason and Siu-Hung Ng, Group cohomology and gauge equivalence of some twisted quantum doubles, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3465-3509 (electronic). MR 1837244        [ Links ]

[16] Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. II, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 29-32. MR 839800        [ Links ]

[17] Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291-308. MR 1990929        [ Links ]

[18] Jiannis K. Pachos, Introduction to topological quantum computation, Cambridge University Press, Cambridge, 2012. MR 3157248        [ Links ]

[19] Frank Quinn, Group categories and their field theories, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 407-453 (electronic). MR 1734419        [ Links ]

[20] Daisuke Tambara and Shigeru Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, Journal of Algebra 209 (1998), no. 2, 692-707.         [ Links ]

[21] C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298. MR 0156890        [ Links ]

[22] Zhenghan Wang, Topological quantum computation, CBMS Regional Conference Series in Mathematics, vol. 112, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010. MR 2640343.         [ Links ]

Recibido: julio de 2016 Aceptado: noviembre de 2016

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License