Text complete end PDF
Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.52 no.1 Bogotá Jan./June 2018
https://doi.org/10.15446/recolma.v1n52.74554
Original articles
Deformations of Noncompact Calabi-Yau threefolds
Deformaciones de Tres-variedades Calabi-Yau no Compactas
1 Universidad Católica del Norte, Antofagasta - Chile
2 Universidad Católica del Norte, Antofagasta - Chile
3 Universidad Católica del Norte, Antofagasta - Chile
4 Universidad Católica del Norte, Antofagasta - Chile
We describe deformations of noncompact Calabi-Yau threefolds for k = 1, 2, 3. We compute deformations concretely by calculations of the cohomology group H1(W k , TW k ) via Čech cohomology. We show that for each k = 1, 2, 3 the associated structures are qualitatively different, and we also comment on their differences from the analogous structures of simpler noncompact twofolds Tot(OP1(-k)).
Keywords: Calabi-Yau; Deformations of noncompact manifolds
Describimos deformaciones de 3-variedades Calabi-Yau no compactas para k = 1, 2, 3. Concretamente, calculamos las deformaciones a través del primer grupo de cohomología H1(W k , TW k ) vía cohomología de Čech. Mostramos que para cada k = 1, 2, 3, las estructuras asociadas son cualitativamente distintas y, además, comentamos sobre sus diferencias con las estructuras análogas de las 2-variedades no compactas Tot(OP1(-k)).
Palabras clave: Calabi-Yau; Deformaciones de variedades no compactas
References
1. Ballico, E., Barmeier, S., Gasparim, E., Grama, L. and San Martin, L.A.B., A Lie theoretical construction of a Landau-Ginzburg model without projective mirrors, arXiv:1610.06965. [ Links ]
2. Barmeier, S., Gasparim, E., Classical deformations of local surfaces and their moduli spaces of instantons, arXiv:1604.01133. (2017). [ Links ]
3. Bershadsky, M., Kodaira-Spencer theory of gravity, Quantum Field Theory and String Theory 328 (1995), 23-38. [ Links ]
4. Gasparim, E., Holomorphic bundles on O(-k) are algebraic, Communications in Algebra 25(9) (1997), 3001-3009. [ Links ]
5. Hartshorne, R., Algebraic Geometry, graduate texts in mathematics, no.52. ed., Springer-Verlag, New York, 1977. [ Links ]
6. Jiménez, J., Contraction of nonsingular curves, Duke Math. 65 (1992), 313-332. [ Links ]
7. Kodaira, K., Complex manifolds and deformations of complex structures, Berlin: Springer, 1986. [ Links ]
8. Manetti, M., Lectures on deformations of complex manifolds (deformations from differential graded viewpoint), vol. 7, Rend. Mat. Appl., 2004. [ Links ]
9. Rubilar, F., Deformaciones de estructuras complejas de 3-variedades Calabi-Yau, Tesis de magíster, Universidad Católica del Norte, Antofagasta, Chile, marzo 2017. [ Links ]
Received: April 13, 2017; Accepted: December 14, 2018