SciELO - Scientific Electronic Library Online

 
vol.52 issue2A Characterization of Strongly Dependent Ordered Abelian Groups author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.52 no.2 Bogotá Jul./Dec. 2018

https://doi.org/10.15446/recolma.v52n2.77153 

Original articles

A direct proof of a theorem of Jech and Shelah on PCF algebras

Una prueba directa de un teorema de Jech y Shelah sobre álgebras PCF

Juan Carlos Martínez1  * 

1 Universitat de Barcelona. Facultat de Matemàtiques i Informàtica, Gran Via 585 08007 Barcelona, Spain. e-mail: jcmartinez@ub.edu


Abstract

By using an argument based on the structure of the locally compact scattered spaces, we prove in a direct way the following result shown by Jech and Shelah: there is a family {Bα: α < ω1} of subsets of ω1 such that the following conditions are satisfied:

(a) max B α - α,

(b) if α ∈ B β then BαB β,

(c) if δ ≤ α and δ is a limit ordinal then Bα ∩ δ is not in the ideal generated by the sets Bβ, β < α, and by the bounded subsets of δ,

(d) there is a partition {An: n ∈ ω} of ω1 such that for every α and every n, B αA n is finite.

Keywords: PCF theory; locally compact scattered space

Resumen

Utilizando un argumento basado en la estructura de los espacios localmente compactos dispersos, demostramos de una manera directa el siguiente resultado de Jech y Shelah: existe una familia {Bα: α < ω1} de subconjuntos de ω1 que verifica las siguientes condiciones:

(a) max B α - α,

(b) si α ∈ B β entonces B αB β,

(c) si δ ≤ α y δ es un ordinal límite, entonces Bα ∩ δ no pertenece al ideal generado por los conjuntos Bβ, β < α, y por los subconjuntos acotados de δ,

(d) existe una partición {An: n ∈ ω} de ω1 tal que para todo α y para todo n, B α ∩ An es finito.

Palabras clave: teoría PCF; espacio localmente compacto disperso

Text complete end PDF

Referencias

[1] U. Abraham and M. Magidor, Cardinal arithmetic, Handbook of Set Theory (M. Foreman and A. Kanamori, eds.), vol. 2, Springer, New York, 2010, pp. 1149-1227. [ Links ]

[2] J. Bagaria, Thin-tall spaces and cardinal sequences, Open Problems in Topology II (E. Pearl, ed.), Elsevier, Amsterdam, 2007, pp. 115-124 . [ Links ]

[3] M. R. Burke and M. Magidor , Shelah’s pcf theory and its applications, Annals of Pure and Applied Logic 50 (1990), no. 3, 207-254. [ Links ]

[4] M. Foreman, Some problems in singular cardinals combinatorics, Notre Dame Journal of Formal Logic 46 (2005), no. 3, 309-322. [ Links ]

[5] T. Jech and S. Shelah, Possible pcf algebras, The Journal of Symbolic Logic 61 (1996), no. 1, 313-317. [ Links ]

[6] P. Komj’ath, Another proof of a result of Jech and Shelah, Czechoslovak Mathematical Journal 63 (2013), no. 3, 577-582. [ Links ]

[7] S. Shelah, Cardinal arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994. [ Links ]

[8] S. Shelah , C. Laflamme, and B. Hart, Models with second order properties V: A general principle, Annals of Pure and Applied Logic 64 (1993), no. 2, 169-194. [ Links ]

Received: April 01, 2017; Accepted: April 17, 2018

* Correspondencia: Juan Carlos Martínez, Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585 08007 Barcelona, Spain. Correo electrónico: jcmartinez@ub.edu. DOI: https://doi.org/10.15446/recolma.v52n2.77153

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License