Text complete end PDF
Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.52 no.2 Bogotá Jul./Dec. 2018
https://doi.org/10.15446/recolma.v52n2.77153
Original articles
A direct proof of a theorem of Jech and Shelah on PCF algebras
Una prueba directa de un teorema de Jech y Shelah sobre álgebras PCF
1 Universitat de Barcelona. Facultat de Matemàtiques i Informàtica, Gran Via 585 08007 Barcelona, Spain. e-mail: jcmartinez@ub.edu
By using an argument based on the structure of the locally compact scattered spaces, we prove in a direct way the following result shown by Jech and Shelah: there is a family {Bα: α < ω1} of subsets of ω1 such that the following conditions are satisfied:
(a) max B α - α,
(b) if α ∈ B β then Bα ⊆ B β,
(c) if δ ≤ α and δ is a limit ordinal then Bα ∩ δ is not in the ideal generated by the sets Bβ, β < α, and by the bounded subsets of δ,
(d) there is a partition {An: n ∈ ω} of ω1 such that for every α and every n, B α ∩ A n is finite.
Keywords: PCF theory; locally compact scattered space
Utilizando un argumento basado en la estructura de los espacios localmente compactos dispersos, demostramos de una manera directa el siguiente resultado de Jech y Shelah: existe una familia {Bα: α < ω1} de subconjuntos de ω1 que verifica las siguientes condiciones:
(a) max B α - α,
(b) si α ∈ B β entonces B α ⊆ B β,
(c) si δ ≤ α y δ es un ordinal límite, entonces Bα ∩ δ no pertenece al ideal generado por los conjuntos Bβ, β < α, y por los subconjuntos acotados de δ,
(d) existe una partición {An: n ∈ ω} de ω1 tal que para todo α y para todo n, B α ∩ An es finito.
Palabras clave: teoría PCF; espacio localmente compacto disperso
Referencias
[1] U. Abraham and M. Magidor, Cardinal arithmetic, Handbook of Set Theory (M. Foreman and A. Kanamori, eds.), vol. 2, Springer, New York, 2010, pp. 1149-1227. [ Links ]
[2] J. Bagaria, Thin-tall spaces and cardinal sequences, Open Problems in Topology II (E. Pearl, ed.), Elsevier, Amsterdam, 2007, pp. 115-124 . [ Links ]
[3] M. R. Burke and M. Magidor , Shelah’s pcf theory and its applications, Annals of Pure and Applied Logic 50 (1990), no. 3, 207-254. [ Links ]
[4] M. Foreman, Some problems in singular cardinals combinatorics, Notre Dame Journal of Formal Logic 46 (2005), no. 3, 309-322. [ Links ]
[5] T. Jech and S. Shelah, Possible pcf algebras, The Journal of Symbolic Logic 61 (1996), no. 1, 313-317. [ Links ]
[6] P. Komj’ath, Another proof of a result of Jech and Shelah, Czechoslovak Mathematical Journal 63 (2013), no. 3, 577-582. [ Links ]
[7] S. Shelah, Cardinal arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994. [ Links ]
[8] S. Shelah , C. Laflamme, and B. Hart, Models with second order properties V: A general principle, Annals of Pure and Applied Logic 64 (1993), no. 2, 169-194. [ Links ]
Received: April 01, 2017; Accepted: April 17, 2018