SciELO - Scientific Electronic Library Online

 
vol.53 issue1Topological degree methods for a Strongly nonlinear p(x)-elliptic problemBlow up and globality of solutions for a nonautonomous semilinear heat equation with Dirichlet condition author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.53 no.1 Bogotá Jan./June 2019

 

Original articles

The Gauss decomposition of products of spherical harmonics

Descomposición de Gauss del producto de armónicas esféricas

RICARDO ESTRADA1 

1 Louisiana State University, Baton Rouge, USA. Department of Mathematics, Louisiana State University Baton Rouge, LA 70803 USA e-mail: restrada@math.lsu.edu


ABSTRACT.

The product of two homogeneous harmonio polynomials is ho-mogeneous, but not harmonic, in general. We give formulas for the Gauss decomposition of the product of two homogeneous harmonic polynomials.

Key words and phrases: Harmonic polynomials; Gauss decomposition; products of spherical harmonics

RESUMEN.

El producto de dos polinomios armónicos y homogéneos es homogéneo pero no armónico, en general. Damos fórmulas para la descomposición de Gauss del producto de dos polinomios armónicos y homogéneos

Palabras y frases clave: Polinomios armónicos; descomposición de Gauss; producto de armónicas esféricas

Text complete end PDF

References

[1] G. S. Adkins, Three-dimensional Fourier transforms, integrals of spherical Bessel functions, and novel delta function identities, Bull. Allahabad Math. Soc. 31 (2016), 215-246. [ Links ]

[2] ______, Angular decomposition of tensor products of a vector, Indian J. Math. 60 (2018), 65-84. [ Links ]

[3] S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, second edition, Springer, New York, 2001. [ Links ]

[4] A. Erdelyi, Die Funksche Integralgleichung der Kugelflächenfunktionen und ihre Übertragung auf die Überkugel, Math. Ann. 115 (1938), 456-465. [ Links ]

[5] R. Estrada, Regularization and derivatives of multipole potentials, J. Math. Anal. Appls. 446 (2017), 770-785. [ Links ]

[6] ______, The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions, Rev. Paranaense de Matematica 37 (2018), 141155. [ Links ]

[7] R. Estrada and R. P. Kanwal, Distributional solutions of singular integral equations, J. Int. Eqns. 8 (1985), 41-85. [ Links ]

[8] ______, A distributional approach to Asymptotics. Theory and Applications, Birkhäuser, Boston, 2002, second edition. [ Links ]

[9] R. Estrada and B. Rubin, Radon-John transforms and spherical harmonics, Contemporary Mathematics 714 (2018), https://doi.org/10.1090/conm/714/14329. [ Links ]

[10] G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, 1976. [ Links ]

[11] P. Funk, Beiträge zur Theorie der Kugelfunktionen, Math. Ann. 77 (1916), 136-152. [ Links ]

[12] E. Hecke, Über orthogonal-invariante Integralgleichungen, Math. Ann. 78 (1918), 398-404. [ Links ]

[13] E. W. Hobson, Spherical and Ellipsoidal Harmonics, Cambridge Univ. Press, London, 1931. [ Links ]

[14] N. M. Nikolov, R. Stora, and I. Todorov, Renormalization of massless Feynman amplitudes in configuration space, Rev. Math. Phys. 26 ( 2014), 143002. [ Links ]

[15] E. Parker, An apparent paradox concerning the field of an ideal dipole, European J. Physics 38 (2017), 025205 (9 pp). [ Links ]

[16] B. Rubin, Introduction to Radon transforms (with elements of Fractional calculus and Harmonic Analysis), Cambridge University Press, Cambridge, 2015. [ Links ]

[17] Bateman Manuscript Project Staff, Higher transcendental functions , vol 2, McGraw Hill, New York, 1953. [ Links ]

[18] J. C. Varilly and J. M. Gracia-Bondía, Stora's fine notion of divergent amplitudes, Nucl. Phys. B 912 (2016), 26-37. [ Links ]

Received: June 2018; Accepted: November 2018

2010 Mathematics Subject Classification. 33C55.

This is an open-access article distributed under the terms of the Creative Commons Attribution License

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License