Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.54 no.1 Bogotá Jan./June 2020
https://doi.org/10.15446/recolma.v54n1.89789
Original articles
On n-th roots of meromorphic maps
Sobre raíces n-ésimas de funciones meromorfas
1 Universidad Central del Ecuador, Quito, Ecuador
2 Universidad de La Frontera, Temuco, Chile
Let S be a connected Riemann surface and let φ: S → Ĉ be branched covering map of finite type. If n ≥ 2, then we describe a simple geometrical necessary and sufficient condition for the existence of some n-th root, that is, a meromorphic map ψ: S → Ĉ such that φ = ψ n .
Keywords: Riemann surfaces; holomorphic branched coverings; maps
Sea S una superficie de Riemann conexa y φ : S → Ĉ un cubrimiento ramificado holomorfo de tipo finito. Para cada n ≥ 2 describimos una condición geométrica necesaria y suficiente para la existencia de alguna raíz n-ésima, esto es, una función meromorfa ψ: S → Ĉ de manera que φ = ψ n .
Palabras clave: Superficies de Riemann; cubrimientos ramificados holomorfos; mapas
Acknowledgment.
We thank the anonymous referee for her/his comments and suggestions which contributed to improving this manuscript.
REFERENCES
[1] B. N. Apanasov, Conformal Geometry of Discrete Groups and Manifolds, De Gruyter Expositions in Mathematics 32, 2000. [ Links ]
[2] G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Mathematics of the USSR-Izvestiya 14 (1980), no. 2, 247-256. [ Links ]
[3] J. C. García and R. A. Hidalgo, On square roots of meromorphic maps, Results in Mathematics 74 (2019), no. 3, Art. 118, 12 pp., https://doi.org/10.1007/s00025-019-1042-7. [ Links ]
[4] E. Girondo, G. González-Diez, R. A. Hidalgo, and G. A. Jones, Zapponi-orientable dessins d'enfants, Revista Matematica Iberoamericana 36 (2020), no. 2, 549-570. [ Links ]
[5] L. Greenberg, Fundamental polyhedra for kleinian groups, Annals of Mathematics, Second Series 84 (1966), 433-441. [ Links ]
[6] A. Grothendieck, Esquisse d'un Programme. (1984). In Geometric Galois Actions, 1. L. Schneps and P. Lochak eds., London Math. Soc. Lect. Notes Ser 242 (1997), 5-47, Cambridge University Press, Cambridge. [ Links ]
[7] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Berlin, New York: Springer-Verlag, 1994. [ Links ]
[8] K. Strebel, Quadratic differentials, Springer, New-York, 1984. [ Links ]
[9] L. Zapponi, Grafi, differenziali di strebel e curve. Tesi di laurea, Università degli studi di Roma “La Sapienza", 1995. [ Links ]
[10] ______, Dessins d'enfants en genre 1. in Geometric Galois Actions, 2. L. Schneps and P. Lochak eds., London Math. Soc. Lecture Note Ser. (1997), 79-116, Cambridge Univ. Press, Cambridge. [ Links ]
[11] ______, Fleurs, arbres et cellules: un invariant galoisien pour une famille d'arbres, Compositio Mathematica 122 (2000), 113-133. [ Links ]
Received: December 06, 2019; Accepted: April 01, 2020