Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.55 no.1 Bogotá Jan./June 2021 Epub Nov 04, 2021
https://doi.org/10.15446/recolma.v55n1.99095
Original articles
A note on the p-adic Kozyrev wavelets basis
Una nota sobre la base de Kozyrev de wavelets p-ádicos
1 Universidad de Sucre, Sincelejo, Colombia
We present a basis of p-adic wavelets for Sobolev-type spaces consisting of eigenvectors of certain pseudodifferential operators. Our result extends a well-known result due to S. Kozyrev.
Keywords: p-Adic numbers; p-Adic wavelets; Sobolev-type spaces
Presentamos una base de wavelets p-ádica para espacios de tipo Sobolev que consiste de vectores propios de ciertos operadores pseudodiferenciales. Nuestro resultado extiende un conocido resultado debido a S. Kozyrev.
Palabras clave: Números p-ádicos; wavelets p-ádicos; espacios tipo Sobolev
REFERENCES
1. S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of p-adic distributions: linear and nonlinear models, Cambridge University Press, 2010. [ Links ]
2. S. Albeverio and S. V. Kozyrev, Multidimensional basis of p-adic wavelets and representation theory, p-Adic Numbers Ultrametric Anal. Appl 1(3) (2009), 181-189. [ Links ]
3. E. Arroyo-Ortiz and W. A. Zuñiga-Galindo, Construction of p-adic covariant quantum fields in the framework of white noise analysis, Reports on Mathematical Physics 84 (2019), no. (1), 1-34. [ Links ]
4. L. Brekke, P. G. O. Freund, M. Olson, and E. Witten, Nonarchimedean string dynamics, Nucl. Phys B302 (1988), no. (3), 365-402. [ Links ]
5. A. Yu. Khrennikov , Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academics, Dordrecht, 1997. [ Links ]
6. A. Yu. Khrennikov , S. V. Kozyrev , and W. A. Zúñiga-Galindo, Ultrametric Equations and its Applications, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2018. [ Links ]
7. M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, 1975. [ Links ]
8. V. S. Varadarajan, Non-archimedean models for space-time, Modern Phys. Lett. A 16 (2001), no. 4-6, 387-395. [ Links ]
9. V. S. Vladimirov, On the equations for p-adic closed and open strings, p-Adic Numbers Ultrametr. Anal. Appl. 1 (2009), no. 1, 79-87. [ Links ]
10. V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Comm. Math. Phys. 123 (1989), no. 4, 659-676. [ Links ]
11. V. S. Vladimirov , I. V. Volovich , and E. I. Zelenov, Spectral theory in p-adic quantum mechanics and representation theory, Mathematics of the USSR-Izvestiya 36 (1991), no. 2, 281-309. [ Links ]
12. V. S. Vladimirov , I. V. Volovich , and E. I. Zelenov, p-adic analysis and mathematical physics, Series On Soviet And East European Mathematics, World Scientific, 1994. [ Links ]
13. I. V. Volovich , p-adic string, Clas. Quant. Gravity 4 (1987), no. 1, L83-L87. [ Links ]
14. I. V. Volovich , Number theory as the ultimate physical theory, p-Adic Numbers Ultrametr. Anal. Appl . 2 (2010), no. 1, 77-87. [ Links ]
15. W. A. Zúñiga-Galindo , Pseudodifferential equations over non-archimedean spaces, Lectures Notes in Mathematics, Springer, 2016. [ Links ]
16. W. A. Zúñiga-Galindo , Non-archimedean white noise, pseudodifferential stochastic equations, and massive euclidean fields, J. Fourier Anal. Appl. 23 (2017), no. 2, 288-323. [ Links ]
Received: May 27, 2019; Accepted: April 01, 2020