Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Ciencias Pecuarias
Print version ISSN 0120-0690
Abstract
MUNERA BEDOYA, Oscar D et al. Sistema fuzzy para predizer respostas fisiológicas de vacas Holstein na região sudeste do Brasil. Rev Colom Cienc Pecua [online]. 2015, vol.28, n.1, pp.42-53. ISSN 0120-0690.
Antecedentes: o ambiente térmico exerce uma influencia direta no desempenho animal. Fatores ambientais, em diferentes circunstancias, podem afetar a produção de leite e a fertilidade dos animais, comprometendo assim a rentabilidade da atividade. Sobcondições de estresse por calor, as vacas leiteiras reduzem o seu consumo de alimento e, consequentemente, a sua produção de leite. Sudorese e respiração ofegante são alguns dos mecanismos que estes animais usam para aliviar o estresse térmico. Além destas consequências, os animais com frequência sofrem mudanças fisiológicas e comportamentais causados pelo estresse calórico, causando uma redução na produção de leite. Objetivo: o objetivo do presente estudo foi desenvolver e avaliar um modelo baseado na teoria dos conjuntos fuzzy para predizer respostas fisiológicas, temperatura retal e frequência respiratória, de vacas leiteiras de raça holandesa branca e preta, expostas a diferentes condições térmicas ambientais. Métodos: o modelo fuzzy proposto foi baseado em dados obtidos experimentalmente (5,884 registros) bem como da literatura (792 registros), referindo-se à influência das variáveis ambientais sobre essas respostas fisiológicas. Cada registro inclui valores de temperatura de bulbo seco do ar, umidade relativa (variáveis de entrada), temperatura retal e frequência respiratória (variáveis de saída). Resultados: o modelo ajustado foi avaliado para cada variável resposta e prediz estas em função das variáveis de entrada. Este modelo foi capaz de predizer a frequência respiratória com um erro padrão médio de 7,73 e a temperatura retal com um erro padrão médio de 0,27. Conclusão: o modelo fuzzy foi desenvolvido com sucesso para predizer respostas fisiológicas. O modelo foi capaz de predizer frequência respiratória e temperatura retal com erros percentuais de +/- 12 y 0,5%, respectivamente.
Keywords : desempenho animal; frequência respiratória; modelo preditivo; temperatura retal.