Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.28 no.2 Bogotá July/Dec. 2005
1Estudiante. Maestría en Matemáticas. Universidad Nacional de Colombia, Sede Bogotá. E- mail: andrea.cavanzo@gmail.com
2 Profesora. Departamento de Estadística. Universidad Nacional de Colombia, Sede Bogotá. E-mail: lblancoc@unal.edu.co
Se hace un estudio detallado de algunas construcciones significativas del movimiento browniano fraccional (mBf) desarrolladas recientemente: la de Taqqu (1975), quien construye el mBf como un límite de sumas parciales nor malizadas de variables aleatorias estacionarias, la de Sottinen (2003), quien utiliza una interpolación de variables aleatorias y la realizada por Delgado & Jolis (2000) quienes aproximan las distribuciones finito dimensionales del mBf a partir de las de procesos continuos definidos por medio de un proceso de Poisson.
Palabras Clave: Convergencia débil, proceso gausiano, proceso de Poisson, movimiento browniano fraccional, caminata aleatoria.
Some of the most significant constructions of the fractional brownian mo tion developed recently are reviewed in detail. Taqqu works with the limit under weak convergence of normalized partial sums of stationary random variables exhibiting long run non-periodic dependence. Sottinen proves a Donsker type approximation theorem and Delgado & Jolis prove that the fractional brownian motion can be weakly approximated by the law of some processes constructed from standard Poisson process.
Keywords: Weak Convergence, Gaussian Process, Poisson Process, Frac- tional Brownian Motion, Random Walk.
Texto completo disponible en PDF
Referencias
1. Billingsley, P. (1968), Convergence of Probability Measures, John Wiley & Sons, New York. [ Links ]
2. Cavanzo, A. (2004), "El movimiento browniano fraccional como límite de ciertos tipos de procesos estocásticos". [ Links ]
3. Decreusefond, L. & Üstünel, A. (1958), Fractional brownian motion: Theory and applications. http://www.emath.fr/proc/vol5/. [ Links ]
4. Delgado, R. & Jolis, M. (2000), "Weak approximation for a class of gaussian process", Applied Probability 37(2), 400- 407. [ Links ]
5. Embrechts, P. & Maejima, M. (2002), Selfsimilar Stochastic Processes, Princeton University Press. [ Links ]
6. Feller,W. (1951), "The asymptotic distribution of the range of sums of independent random variables", Ann. Math. Stat. 22, 427- 432. [ Links ]
7. Feller, W. (1971), An Introduction to Probability Theory and its Applications 2, John Willey & Sons, New York. [ Links ]
8. Lamperti, J. (1962), "Semi-stable stochastic processes", Amer. Math. Soc. Trans. 104, 62- 78. [ Links ]
9. Lin, S. (1995), "Stochastic analysis of fractional brownian motion", Stochastic and Stochastic Reports 55(1-2), 121- 140. [ Links ]
10. Mandelbrot, B. & Ness, J. V. (1968), "Fractional brownian motion, fraccional noises and applications", SIAM Review 10(4), 422- 437. [ Links ]
11. Nualart, D. (2003), Stochastic integration with respect to fractional brownian motion an applications. Preprint. [ Links ]
12. Sottinen, T. (2001), "Fractional brownian motion, random walks and binary market models", Finance and Stochastic 5(3), 343- 355. [ Links ]
13. Sottinen, T. (2003), Fractional brownian motion in finance and queueing, Technical report, Academic Dissertation, Department of Mathematics, Faculty of Science University of Helsinki. [ Links ]
14. Stroock, D. (1982), Topics in Stochastic Differential Equations, Tata Institute of Fundamental Research & Springer Verlag, Berlín. [ Links ]
15. Taqqu, M. (1975), "Weak convergence to fractional brownian motion and to the Rosenblatt process", Z. Wahrsch. Verwandte Gebiete 31, 287- 302. [ Links ]
16. Vervaat, W. (1985), "Sample path properties of self-similar processes with stationary increments", Annals of Probability 13, 1- 27. [ Links ]