Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.28 no.2 Bogotá July/Dec. 2005
1Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, E-mail: hmmorae@unal.edu.co
La regresión cuantílica es un problema de optimización convexa no diferenciable. Se examinan las ventajas y desventajas con relación a la necesidad de recursos de memoria y tiempo de cálculo de tres métodos clásicos de solución: dos de optimización lineal y el método de planos de corte.
Palabras Clave: regresión cuantílica, optimización lineal, optimización no diferenciable, planos de corte.
Quantile regression is a nondifferentiable convex optimization problem. We compare three classical numerical methods, two of them based on linear optimization, and the cutting plane method. We compare them by their re quired memory and computing time.
Keywords: quantile regression, linear programming, nondifferentiable optimization, cutting planes.
Texto completo disponible en PDF
Referencias
1. Cade, B. & Noon, B. (2003), "A Gentle Introduction to Quantile Regression for Ecologists", Frontiers in Ecology and the Environment 1(8), 412-420. [ Links ]
2. Cheney, E. & Goldstein, A. (1959), "Newton"s Method for Convex Programming ans Tchebycheff Approximations", Numerische Mathematik (1), 253-268. [ Links ]
3. Du Merle, O. (1995), Points intérieurs et plans coupants : mise en oeuvre et développement d"une méthode pour l"optimisation convexe et la programmation linéaire structurée de grand taille, PhD thesis, Universidad de Ginebra. [ Links ]
4. Fitzenberger, B., Koenker, R. & Machado, J. (2002), Economic Applications of Quantile Regression, Physica-Verlag, Heidelberg. [ Links ]
5. Goffin, J., Haurie, A. & Vial, J. (1992), "Decomposition and Nondifferentiable Optimization with the Projective Algorithm", Management Science 38(2), 284-302. [ Links ]
6. Kelley, J. (1960), "The Cutting Plane Method for Convex Problems", J. SIAM (8), 703-712. [ Links ]
7. Koenker, R. & Basset, G. J. (1978), "Regression Quantiles", Econometrica 46(1), 33-50. [ Links ]
8. Sagastizábal, C. (1997), Optimisation non Differérentiable en Bonnans J.F. et al., Optimisation Numérique, Springer, Paris. [ Links ]
9. Silva, M.A. Arenales, M. (2000), "Uma extensão do método simplex para a resolucão do problema de regressão quantil", Rev. Mat. Est., São Paulo (18), 125-144. [ Links ]