Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.28 no.2 Bogotá July/Dec. 2005
1Profesor Agregado, Escuela de Estadística, Facultad de Ciencias Económicas y Sociales, Universidad de Los Andes, Mérida 5101, Venezuela. E-mail: borgesr@ula.ve
Se realiza un análisis de supervivencia de pacientes que acudían al Servicio de Diálisis Peritoneal del Hospital Clínico Universitario de Caracas, Venezuela, entre los años 1980 y 1997, utilizando la muerte como evento de interés. El análisis incluye: estimaciones de las funciones de supervivencia mediante el estimador de Kaplan-Meier, obtención del mejor modelo semiparam étrico de riesgos proporcionales (modelo de Cox), verificación de los supuestos y análisis de residuos. El modelo de Cox incluye diabetes, edad y el índice de Quetellet como covariables.
Palabras Clave: Análisis de supervivencia, estimador de Kaplan y Meier, modelo de riesgos proporcionales (modelo de Cox), diálisis peritoneal.
A survival analysis in patients that assisted to the peritoneal dialysis service of the Hospital Clínico Universitario de Caracas, Venezuela, between 1980 y 1997, using death as event of interest is presented. Estimation of the survival function by the Kaplan-Meier estimator, Semi-parametric proportional hazard models (Cox models), verification of the assumptions of the models and residual analysis are included. In the Cox model, diabetes, age and Quetellet"s index are used as covariates.
Keywords: Survival Analysis, Kaplan-Meier estimator, proportional hazard model (Cox model), continuous ambulatory peritoneal dialysis.
Texto completo disponible en PDF
Referencias
1. Andersen, P., Borgan, O., Gill, R. & Keiding, N. (1993), Statistical Models Based on Counting Processes, Springer-Verlag, N.Y. [ Links ]
2. Borges, R. (2002), Análisis de supervivencia aplicado a un caso de diálisis renal: diálisis peritoneal en el Hospital Clínico Universitario de Caracas y Hemodi álisis en el Hospital de Clínicas Caracas, 1980-2000, Masters thesis, Instituto de Estadística Aplicada y Computación, ULA, Mérida. [ Links ]
3. Burton, P. R. & Walls, J. (1987), "Selection-adjusted comparison of life-expectancy of patients on continuous ambulatory peritoneal dialysis, haemodialysis and renal transplantation", The Lancet i, 1115-1119. [ Links ]
4. Cox, D. (1972), "Regression models and life tables (with discussion).", Journal of the Royal Statistical Society: Series B (34), 187-220. [ Links ]
5. Fleming, T. R. & Harrington, D. P. (1991),Counting Processes and Survival Analysis, John Wiley & Sons, Inc., N.Y. [ Links ]
6. Greenwood, M. (1926), "The natural duration of cancer", Reports on Public Health and Medical Subjects (33), 1-26. [ Links ]
7. Held, P. J., Port, F. K., Turrenne, M.Ñ., Gaylin, D. S., Hamburger, R. J. & Wolfe, R. A. (1994), "Continuous ambulatory peritoneal dialysis and hemodialysis: Comparison of patients with adjustment for comorbid conditions", Kidney International (45), 1163-1169. [ Links ]
8. Hosmer, D. W. & Lemeshow, S. (1999), Applied Survival Analysis: Regression Modeling of Time to Event Data, John Wiley & Sons, Inc., N.Y. [ Links ]
9. Hougaard, P. (1995), "Frailty models for survival data", Lifetime Data Analysis (1), 255-273. [ Links ]
10. Hutchinson, T. A., Thomas, D. C., Lemieux, J. C. & Harvey, C. E. (1984), "Prognostically controlled comparison of dialysis and renal transplantation", Kidney International (26), 44-51. [ Links ]
11. Insightful Corporation, I. (2001), S-PLUS 6 for Windows Guide to Statistics, Volume 2, WA: Insightful Corporation, Inc., Seattle. [ Links ]
12. Iseki, K., Miyasato, F., Tokuyama, K., Nishime, K., Ueshara, H., Shiohira, Y., Sunagawa, H., Yoshihara, K., Yoshi, S., Toma, S., Kowatari, T.,Wake, T., Oura, T. & Fukiyama, K. (1997), "Low diastolic blood pressure, hipoalbuminemia, and risk of death in a cohort of hemodialysis patients", Kidney International (51), 1212-1217. [ Links ]
13. Kaplan, E. & Meier, P. (1958), "Nonparametric estimation from incomplete observations", Journal of the American Statistical Association (53), 457-481. [ Links ]
14. Liang, K., Self, S., Bandeen-Roche, K. & Zeger, Z. (1995), "Some recent developments for regression analysis of multivariate failure time data", Lifetime Data Analysis (1), 403-415. [ Links ]
15. Maggiore, Q., Nigrelli, S., Cicarelli, C., Grimaldi, C., Rossi, G. & Michelassi, C. (1996), "Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients", Kidney International (50), 2103-2108. [ Links ]
16. Maiorca, R., Vonesh, E., Cancarini, G., Cantaluppi, A.,Manili, L., Brunori, G., Camerini, C., Séller, P. & Strada, A. (1988), "A six-years comparison of patients and technique survivals in capd and hd", Kidney International (34), 518-524. [ Links ]
17. Maiorca, R., Vonesh, E., Cavalli, P., De Vecchi, A., Giangrande, A., La Greca, G., Scarpione, L., Bragantini, L., Cancarini, G., Cantaluppi, A., Castelnovo, C., A., C., Poisetti, P. & Viglino, G. (1991), "A multicenter selection-adjusted comparison of patients and technique survival on capd and hemodialysis", Peritoneal Dialysis International (11), 118-127. [ Links ]
18. R Development Core Team (2005), R: A Language and Environment for Statistical Computing, Vienna, Austria. [ Links ]
19. Therneau, T. & Grambsch, P. (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag, N.Y. [ Links ]
20. Therneau, T., Grambsch, P. & Fleming, T. (1990), "Martingale-based residuals for survival models", Biometrika (77), 147-160. [ Links ]
21. Vaupel, J., Manton, K. & Stallard, E. (1979), "The impact of heterogeneity in individual frailty on the dynamics of mortality", Demography (16), 439-454. [ Links ]
22. Woods, J., Port, F., Orzoul, S., Buoncristiani, U., Y. E., Wolfe, R. & Held, P. (1998), "Clinical and biochemical correlates of starting daily hemodialysis", Kidney International (55), 2467-2476. [ Links ]