SciELO - Scientific Electronic Library Online

 
vol.29 issue2Statistical Studies of Age - Specific HIV - Prevalence DataData Imputation in Switchback Designs Using a Mixed Model with Correlated Errors author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.29 no.2 Bogotá July/Dec. 2006

 

O princípio da equivariância: conceitos e aplica,cões

The Principle of Equivariance: Concepts and Applications

JUVÊNCIO NOBRE1, CAIO AZEVEDO2

1 Departamento de Estatística e Matemática aplicada, Universidade Federal do Ceará, Forteleza, Brasil e Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil, Professor assistente. E-mail: juvencio@ime.usp.br
2 Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil, Aluno de doutorado do curso de estatística. E-mail: cnaber@ime.usp.br


Resumo

Neste trabalho apresentamos uma revisão do princípio da estima,cão equivariante e algumas de suas aplica,cões na família de localiza,cão-escala e em modelos lineares. Consideramos também o estimador não viciado de variância uniformemente mínima em modelos lineares. Vários exemplos são apresentados para ilustrar o uso destes métodos.

Palavras chave: Estima,cão equivariante, família de localiza,cão-escala, fun,cão de perda, modelos lineares, estimador não viciado de variância uniformemente mínima.


Abstract

In this work we present a review under the principle of equivariant estimation and their applications to the location-scale families and some linear models. We also consider the minimum variance unbiased estimation under the linear models framework. We show some examples to illustrate the use of those methods.

Key words: Equivariant estimation, Location-scale families, Loss function, Linear models, Minimum variance unbiased estimator


Texto completo disponible en PDF


REFERÊNCIAS

1. Alexander, T. L. & Chandrasekar, B. (1999), "Equivariant Estimation for the Para- Meters of an Exponential Model Based on Censored Sampling", Biometrical Journal 41, 471- 481.        [ Links ]

2. Borovkov, A. A. (1998), Mathematics Statistics, Gordon and Breach Science Publishes, Moscow.        [ Links ]

3. Casella, G. & Berger, R. L. (2002), Statistical Inference, 2nd edn, Duxbury Advanced Series, New York.        [ Links ]

4. Harville, D. A. (1976), "Extension of the Gauss-Markov Theorem to Include the Estimation of Random Effects", The Annals of Statistics 4, 384- 395.        [ Links ]

5. Khuri, A. I., Mathew, T. & Sinha, B. K. (1998), Statistical Tests for Mixed Linear Models, John Wiley & Sons, New York.        [ Links ]

6. Lehmann, E. L. & Casella, G. (1998), Theory of Point Estimation, 2nd edn, Springer-Verlag, New York.        [ Links ]

7. Lehmann, E. L. & Romano, J. P. (2005), Testing Statistical Hypothesis, 3rd edn, Springer-Verlag, New York.        [ Links ]

8. Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979), Multivariate Analysis, Academic Press, London.        [ Links ]

9. Prabakaran, T. & Chandrasekar, B. (1994), "Simultaneous Equivariant Estimation for Location-Scales Models", Journal of Statistical Planning and Inference 40, 51- 59.        [ Links ]

10. Scheffé, H. (1959), The Analysis of Variance, Wiley, New York.        [ Links ]

11. Schervish, M. J. (1995), Theory of Statistics, Springer-Verlag, New York.        [ Links ]

12. Searle, S. R. (1987), Linear Models for Unbalaced Data, Wiley, New York.        [ Links ]

13. Seber, G. A. F. (1977), Linear Regression Analysis, Wiley, New York.        [ Links ]

14. Staudte, R. G. (1971), "A Characterization of Invariant Loss Functions", The Annals of Mathematical Statistics 42, 1322- 1327.        [ Links ]

15. Zacks, S. (1971), The Theory of Statistical Inference, John Wiley, New York.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License