SciELO - Scientific Electronic Library Online

 
vol.30 issue1About the Best Linear Unbiased Predictor (BLUP) and Associated RestrictionsCalculus of the Estimators of Linear Quantile Regression by the Method ACCPM author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.30 no.1 Bogotá Jan./June 2007

 

Una introducción a los diseños óptimos

An Introduction to Optimal Designs

VÍCTOR IGNACIO LÓPEZ1, ROGELIO RAMOS2

1Escuela de Estadística, Universidad Nacional de Colombia, Medellín. Profesor asistente. Estudiante de doctorado en Ciencias con Orientación en Probabilidad y Estadística. E-mail: vilopez@unalmed.edu.co
2Centro de Investigación en Matemáticas (CIMAT), Guanajuato, Gto., México. Investigador titular. E-mail: rramosq@cimat.mx


Resumen

Introducimos varios conceptos utilizados en la teoría de diseños de experimentos óptimos. Definimos criterios de optimalidad utilizados en esta área y exploramos sus propiedades. Se listan algunos resultados importantes para encontrar diseños óptimos para modelos lineales y no lineales, entre ellos teoremas de equivalencia. Finalmente se presentan algunos ejemplos típicos donde se aplica la teoría vista anteriormente.

Palabras clave: función de información, matriz de información, criterios de optimalidad, teoremas de equivalencia, modelos de regresión no lineal.


Abstract

We introduce several concepts used in optimal experimental design. Optimality criteria used in this area are defined and their properties are explored. Some important results for finding optimal designs in linear and nonlinear models are listed, specially equivalence theorems are formulated. Finally, we present some examples where that theory is applied.

Key words: Information function, Information matrix, Optimality criteria, Equivalence theorems, Nonlinear regression models.


Texto completo disponible en PDF


Referencias

1. Atkinson, A. C. (1996), ‘The Uselfulness of Optimum Experimental Designs’, Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 59–76.        [ Links ]

2. Atkinson, A. C. & Cox, D. R. (1974), ‘Planning Experiments for Discriminating Between Models’, Journal of the Royal Statistical Society. Series B (Methodological) 36(3), 321–348.        [ Links ]

3. Atkinson, A. C. & Donev, A. N. (1992), Optimum Experimental Designs, Oxford Science Publications, New York.        [ Links ]

4. Atkinson, A. C. & Fedorov, V. V. (1975), ‘Optimal Design: Experiments for Discriminating Between Several Models’, Biometrika 62(2), 289–303.        [ Links ]

5. Biedermann, S., Dette, H. & Pepelyshev, A. (2005), ‘Optimal Discrimination Designs for Exponential Regression Models’, Preprint.        [ Links ]

6. Biswas, A. & Chaudhuri, P. (2002), ‘An Efficient Design for Model Discrimination on Parameter Estimation in Linear Models’, Biometrika 89(3), 709–718.        [ Links ]

7. Brown, L. D., Olkin, I., Sacks, J. & Wynn, H. P. (1985), Jack Karl Kiefer Collected Papers III, Design of Experiments, Springer Verlag, New York.        [ Links ]

8. Chernoff, H. (1953), ‘Locally Optimal Designs for Estimating Parameters’, The Annals of Mathematical Statistics 24(24), 586–602.        [ Links ]

9. Dette, H., Haines, L. M. & Imhof, L. A. (2003), ‘Maximin and Bayesian Optimal Designs for Regression Models’, Preprint.         [ Links ] pp. 1-15.

10. Dette, H., Melas, V. B. & Pepelyshev, A. (2004), ‘Optimal Designs for a Class of Nonlinear Regression Models’, The Annals of Statistics 32(5), 2142–2167.        [ Links ]

11. Dette, H., Melas, V. B. & Wong, W. K. (2005), ‘Optimal Design for Goodness-of-Fit of the Michaelis-Menten Enzyme Kinetic Function’, Journal of the American Statistical Association 100(472), 1370–1381.        [ Links ]

12. Ford, I., Tornsney, B. & Wu, C. F. J. (1992), ‘The Use of a Canonical Form in the Construction of Locally Optimal Designs for Nonlinear Problems’, Journal of the Royal Statistical Society, Series B (Methodological) 54.        [ Links ]

13. Kiefer, J. (1959), ‘Optimum Experimental Designs (With Discussion)’, Journal Royal Statistical Society, B 21, 272–319.        [ Links ]

14. Kiefer, J. & Wolfowitz, J. (1960), ‘The Equivalence of Two Extremum Problems’, Canadian Journal of Mathematics 12, 363–366.        [ Links ]

15. Pukelsheim, F. (1993), Optimal Design of Experiments, John Wiley & Sons, New York.        [ Links ]

16. Pukelsheim, F. & Rosenberger, J. L. (1993), ‘Experimental Designs for Model Discrimination’, Journal of the American Statistical Association 88(422), 642–649.        [ Links ]

17. Pukelsheim, F. & Torsney, B. (1991), ‘Optimal Weights for Experimental Designs on Linearly Independent Support Points’, The Annals of Statistics 19(3), 1614–1625.        [ Links ]

18. R Development Core Team (2006), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Internet. http://www.R-project.org        [ Links ]

19. Smith, K. (1918), ‘On the Standard Deviations of Adjusted and Interpolates Values of an Observed Polynomial Functions and its Constants and the Guidance They Give Towards a Proper Choice of the Distribution of Observations’, Biometrika 12, 1–85.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License