Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.30 no.1 Bogotá Jan./June 2007
1Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá. Profesor asociado. E-mail: rgiraldoh@unal.edu.co
Se muestra cómo las estadísticas descriptivas funcionales y el análisis en componentes principales funcional (ACPF) pueden emplearse en la evaluación empírica del supuesto de estacionariedad considerado en la modelación de variables regionalizadas. Se toma como ejemplo información georreferenciada correspondiente a mediciones de profundidad recogidas en 114 sitios de la Ciénaga Grande de Santa Marta, Colombia.
Palabras clave: análisis de datos funcionales, análisis en componentes principales funcional, estacionariedad.
It is shown how summary statistics of functional data and functional principal components analysis (FPCA) can be used to evaluate the stationarity assumption considered in modeling of regionalized variables. As an example is taken georeferenced information of depth measured at 114 locations at Ciénaga Grande de Santa Marta, Colombia.
Key words: Functional data analysis, Functional principal components analysis, Stationarity.
Texto completo disponible en PDF
Referencias
1. Cardot, H., Ferraty, F. & Sarda, P. (1999), Functional Linear Model, Statistics and Probability Letters 45, 1122. [ Links ]
2. Christakos, G. (2000), Modern Spatio Temporal Geostatistics, Oxford University Press, New York. [ Links ]
3. Cressie, N. (1993), Statistic for Spatial Data, John Wiley & Sons, New York. [ Links ]
4. Cuevas, A., Febrero, M. & Fraiman, R. (2004), An ANOVA Test for Functional Data, Computational Statistics and Data Analysis 47, 111122. [ Links ]
5. Delicado, P. (2007), Functional k-Sample Problem when Data are Density Functions, Computational Statistics Published online, http://www.Springerlink.com [ Links ]
6. Deville, J. (1974), Méthodes statistiques et numeriques de lanalyse harmonique, Ann. Insee 15, 3104. [ Links ]
7. Escabias, M., Aguilera, A. & Valderrama, M. (2004), Principal Components Estimation of Functional Logistic Regression: Discussion of Two Different Approaches, Journal of non Parametric Statistics 16(3-4), 365384. [ Links ]
8. Ferraty, F. & Vieu, P. (2006), Non Parametric Functional Data Analysis. Theory and Practice, Springer, New York. [ Links ]
9. Giraldo, R., Troncoso, W., Mancera, J. & Méndez, N. (2000), Geoestadística: una herramienta para la modelación en estuarios, Rev. Acad. Col. Cienc. 24(90), 6072. [ Links ]
10. He, G., Muller, G. & Wang, J. (2000), Extending Correlation and Regression from Multivariate to Functional Data, in M. Puri, ed., Asymptotics in Statistics and Probability, Brill Academic Publisher, Leiden, pp. 114. [ Links ]
11. Isaaks, E. & Srivastava, M. (1987), Applied Geostatistics, Oxford University Press, New York. [ Links ]
12. Journel, A. & Huijbregts, C. (1978), Mining Geostatistics, Academic Press, London. [ Links ]
13. Pezulli, S. & Silverman, B. (1993), Some Properties of Smoothed Components Analysis for Functional Data, Computational Statistics 8, 116. [ Links ]
14. R Development Core Team (2006), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org [ Links ]
15. Ramsay, J. (1998), Estimating Smooth Monotone Functions, Journal Royal Statistical Society, Series B 60, 365375. [ Links ]
16. Ramsay, J. & Dalzell, C. (1991), Some Tools for Functional Data Analysis, Journal Royal Statistical Society 53(3), 539572. [ Links ]
17. Ramsay, J. & Silverman, B. (1997), Functional Data Analysis, Springer. [ Links ]
18. Ramsay, J. & Silverman, B. (2005), Functional Data Analysis, Springer. [ Links ]
19. Samper, F. & Carrera, J. (1993), Geoestadística. Aplicaciones a la hidrogeología subterránea, Centro Internacional de Métodos Numéricos en Ingeniería, UPC Barcelona. [ Links ]
20. Simonoff, J. (1996), Smoothing Methods in Statistics, Springer. [ Links ]