Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.31 no.1 Bogotá Jan./June 2008
1Fundación Caubet-Cimera Illes Balears, Mallorca, España. Programa de epidemiología e investigación clínica. Email: martinez@caubet-cimera.es
Este trabajo estudia las ventajas y limitaciones de un test para contrastar la igualdad de las distribuciones de origen de k-muestras independientes. El estadístico propuesto, denominado LGk, está basado en una medida que generaliza la norma L1 entre funciones de densidad y que permite comparar simultáneamente k densidades. Desde esta medida y a partir de la estimación kernel, se desarrolla un test para contrastes de igualdad entre k poblaciones independientes (LGk). A partir de un "amplio" estudio de simulación, se estudia la potencia del test propuesto y se compara con algunos de los test no paramétricos ya existentes, considerando ocho estadísticos diferentes. También se analiza el tema de la elección del tamaño del parámetro ventana y se realizan algunas propuestas relativas a este problema.
Palabras clave: estimación kernel, medida L1, selección del parámetro ventana, bootstrap.
In this paper we study a test to contrast the equality among the origen distributions of k-independent samples. The proposed statistic, denoted as LGk, is based in a measure which generalizes the L1-norm among density functions and it allows us to compare k-different densities. From this measure and the kernel density estimation, a k-sample test for independent populations is developed. We make a wide simulation study for the proposed test and we compare its power with other nonparametric k-sample test, by considering a total of eight different statistics. We also analyze the topic of the bandwidth selection and make the same proposals about this problem.
Key words: Kernel density estimation, L1 Measure, Bandwidth selection, Bootstrap.
Texto completo disponible en PDF
Referencias
1. Anderson, N. H., Hall, P. & Titterington, D. M. (1994), `Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions using Kernel-Based Density Estimates´, Journal of Multivariate Analysis 50, 41-54. [ Links ]
2. Cao, R. & Van Keilegom, I. (2006), `Empirical Likelihood Tests for Two-Sample Problems via Nonparametric Density Estimation´, Canad. J. Statist. 34, 61-77. [ Links ]
3. Conover, W. J. (1965), `Several k-sample Kolmogorov-Smirnov tests´, Annals of Math. Statistics 36, 1019-1026. [ Links ]
4. Devroye, L. & Gyorfi, L. (1985), Nonparametric Density Estimation. The L1-View, Wiley, New York, United States. [ Links ]
5. Hall, P., DiCiccio, J. T. & Romano, J. P. (1989), `On Smoothing and the Bootstrap´, Annals of Statistics 17(2), 692-704. [ Links ]
6. Horvath, L. (1991), `On L_p-Norms of Multivariate Density Estimations´, Annals of Statistics 19(4), 1933-1949. [ Links ]
7. Kiefer, J. (1959), `K-Sample Analogues of the Kolmogorov-Smirnov, Cramér-Von Mises Test´, Ann. Math. Statist. 30, 420-447. [ Links ]
8. Kruskal, W. H. & Wallis, W. A. (1952), `Use of Ranks in One-Criterion Variance Analysis´, Journal of the American Statistical Association 47(260), 583-621. [ Links ]
9. Lewis, J. L. (1972), `A k-Sample Test Based on Range Intervals´, Biometrika 59(1), 155-160. [ Links ]
10. Nadaraya, E. A. (1964), `Some new Estimates for Distribution Functions´, Theory Prob. Appl. 9, 497-500. [ Links ]
11. R Development Core Team, (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org [ Links ]
12. Rosenblatt, M. (1956), `Remarks on Some nonparametric Estimates of a Density Functions´, Annals Math. Statistics 27, 832-837. [ Links ]
13. Scholz, F. W. & Stephens, M. A. (1987), `K-Samples Anderson-Darling Test´, J. Amer. Statist. Assoc. 82, 918-924. [ Links ]
14. Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, United Kingdom. [ Links ]
15. Wand, M. P. & Jones, M. C. (1995), Kernel Smoothing, Chapman & Hall, London, United Kingdom. [ Links ]
16. Zhang, J. & Wu, Y. (2007), `K-Sample Tests Based on the Likelihood Ratio´, Comput. Stat. Data Anal. 51(9), 4682-4691. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv31n1a01,
AUTHOR = {Martínez-Camblor, Pablo},
TITLE = {{Test de hipótesis para contrastar la igualdad entre k-poblaciones}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2008},
volume = {31},
number = {1},
pages = {1-18}
}