SciELO - Scientific Electronic Library Online

 
vol.33 issue1Probability Distributions Involving on Generalized Hypergeometric Functions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.33 no.1 Bogotá Jan./June 2010

 

A Probability Model for the Child Mortality in a Family

Un modelo probabilístico para la mortalidad en la infancia en una familia

HIMANSHU PANDEY1, JAI KISHUN2

1Gorakhpur University, Department of Mathematics and Statistics, Gorakhpur, India. Professor. Email: himanshupandey@is.iiita.ac.in
2Gorakhpur University, Department of Mathematics and Statistics, Gorakhpur, India. Professor email Email: jaikishan.stat@gmail.com


Abstract

This paper proposed, under assumptions of inflated type fixed displaced geometric model, the distribution pattern of families according to number of child deaths within the first five years of life. The proposed model involves several parameters related to child mortality in a family, which is estimated with Method of Moments and Maximum Likelihood Estimation techniques. The proposed models fitted the observed data showing a better approximation at the survey area and draw some vital conclusions.

Key words: F distribution, G-estimation, M-estimation, t-distribution, Mortality, Death, Contraception, Probability model.


Resumen

Este documento presenta, bajo el supuesto de un modelo geométrico de desplazamiento fijo, patrones de distribución de las familias, de acuerdo con el número de defunciones de sus hijos menores de cinco años. El modelo emplea diferentes parámetros relacionados con la mortalidad en la infancia en una familia, estimada con el método de momentos y de máxima verosimilitud. Los modelos propuestos ajustan los datos observados, mostrando mejor aproximación a la encuesta de área y describe algunas conclusiones vitales.

Palabras clave: distribución F, estimación G, estimación M, Distribución t, mortalidad, anticoncepción, modelos de probabilidad.


Texto completo disponible en PDF


References

1. Arnold, B. C. (1993), 'Pareto Distributions', Statistical Distributions 5.         [ Links ]

2. Bhuyan, K. C. & Deogratias, R. (1999), 'On a Probability Model for Child Mortality Pattern in North East Libya', Turkish Journal of Population Studies(21), 33-38.         [ Links ]

3. Brass, W. (1995a), A Simple approximation for the time Location of Estimates of Child Mortality from Proportions dead by age of Mother, 'Advances in Methods for Estimating Fertility and Mortality from Limited and Defective Data', London School of Hygiene and Tropical Medicine, London, p. 1-16.         [ Links ]

4. Brass, W. (1995b), The Derivative of Life Tables from Retrospective Estimates of Child and Adult Mortality, 'Advances in methods for estimating fertility and mortality from limited and defective data', London School of Hygiene and Tropical Medicine, London.         [ Links ]

5. Chauhan, R. K. (1997), 'Graduation of Infant Deaths by Age', Demography India 2(26), 261-274.         [ Links ]

6. Goldblatt, P. O. (1989), 'Mortality by Social Class, 1971-85', Population Trends(56), 6-15.         [ Links ]

7. Heligman, L. & Pollard, J. H. (1980), 'Age Pattern of Mortality', Journal of Institute of Actuaries(117), 49-80.         [ Links ]

8. Hill, A. G. & Devid, H. P. (1989), Measuring Child Mortality in the Third World, 'IUSSP Proceeding of International Conference', New Delhi, India.         [ Links ]

9. Kabir, M. & Amir, R. (1993), 'Factors Influencing Child Mortality in Bangladesh and Their Implications for the National Health Programme', Asia-Pacific Population Journal 8(3), 31-46.         [ Links ]

10. Keyfit, N. (1977), Applied Mathematical Demography, John Wiley, New York, United States.         [ Links ]

11. Krishnan, P. & Jin, Y. (1993), 'A Statistical Model of Infant Mortality', Janasamkhya 11(2), 67-71.         [ Links ]

12. Pathak, K. B., Pandey, A. & Mishra, U. S. (1991), 'On Estimating current Levels of Fertility and Child Mortality from the Data on Open Birth Interval and Survival Status of the last Child', Janasamkhya 9(1), 15-24.         [ Links ]

13. Preston, S. H. & Palloni, A. (1977), 'Fine-Tuning Brass Type Mortality Estimates with Data on Ages of Surviving Children', Population Bulletin of the United Nations(10).         [ Links ]

14. Ronald, D. L. & Lawrence, R. C. (1992), 'Modeling and Forecasting U.S. Mortality', Journal of American Statistical Associations(87), 659-675.         [ Links ]

15. Sastry, N. (1997), 'A Nested Frailty Model for Survival Data, with an Application to the Study of Child Survival in North East Brazil', Journal of the American Statistical Association 92.         [ Links ]

16. Srivastava, S. (2001), Some Mathematical Models in Demography and Their Application, Doctoral Thesis, Banaras Hindu University, Varanasi, India.         [ Links ]

17. Thiele, P. N. (1972), 'On Mathematical Formula to Express the Rate of Mortality Throughout the Whole of Life', Journal of Institute of Actuaries(16), 313.         [ Links ]

[Recibido en julio de 2009. Aceptado en diciembre de 2009]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv33n1a01,
    AUTHOR  = {Pandey, Himanshu and Kishun, Jai},
    TITLE   = {{A Probability Model for the Child Mortality in a Family}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2010},
    volume  = {33},
    number  = {1},
    pages   = {1-11}
}

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License