SciELO - Scientific Electronic Library Online

 
vol.34 issue2Comparison between Competing Risks via the Copula-Graphic Estimator author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.34 no.2 Bogotá June 2011

 

Influencia de la adición de nano y microsílice en la estabilidad térmica de una resina epoxi. Aplicaciones del ANOVA funcional

Influence of Nano and Micro Silica Addition on Thermal Stability of an EpoxyResin. Use of Functional ANOVA

JAVIER TARRÍO1, SALVADOR NAYA2

1Universidad de A Coruña, Escuela Politécnica Superior, Departamento de Matemáticas, Ferrol, España. Profesor titular. Email: jtarrio@udc.es
2Universidad de A Coruña, Escuela Politécnica Superior, Departamento de Matemáticas, Ferrol, España. Profesor titular. Email: salva@udc.es


Resumen

El principal objeto de este trabajo ha sido el empleo de una nueva técnica que aúna el análisis funcional y el diseño de experimentos: ANOVA funcional para un factor tratamiento. Mediante esta herramienta se ha medido la influencia que tiene la adición de una mezcla de nano y micro partículas de humo de sílice, subproducto de la industria del silicio, en la degradación térmica de una resina epoxi. Para tal fin se ha realizado un diseño de experimentos con un factor tratamiento (cantidad de humo de sílice) a tres niveles diferentes. Los datos se han obtenido mediante el empleo del Análisis Termogravimétrico (TG), dando como resultado cinco curvas o trayectorias de degradación por nivel. El ANOVA funcional aprovecha toda la información de cada curva o dato funcional.
El empleo del ANOVA funcional a partir de los datos TG ha dado como resultado que la cantidad de humo de sílice influye significativamente en la estabilidad térmica del compuesto y de la resina epoxi involucrada en cada muestra. Estos hechos pueden ser un indicio de la interacción entre la fase orgánica e inorgánica del material.

Palabras clave: análisis de datos funcionales, ANOVA, diseño de experimentos.


Abstract

The main purpose of this work has been the use of a new technique that combines the functional analysis and design of experiments: a one way functional ANOVA. Using this tool is intended to measure the influence of the addition of a mixture of nano and micro particles of silica fume, by-product of silicon industry, on the thermal degradation of epoxy resin. To achieve this, it has been performed a design of experiments with a treatment factor (amount of fumed silica) at three different levels. The data were obtained using thermogravimetric analysis (TG), resulting in five curves or degradation pathways by level. The functional ANOVA uses all information of each curve or functional data.
The use of functional ANOVA from TG data has resulted in the amount of silica fume significantly affect the thermal stability of the compound and the epoxy resin involved in each sample. These facts may be indicative of the interaction between the organic and the inorganic phase.

Key words: ANOVA, Experimental design, Functional data analysis.


Texto completo disponible en PDF


Referencias

1. Cuevas, A., Febrero, M. & Fraiman, R. (2004), `An anova test for functional data´, Computational Statistics and Data Analysis 47, 111-122.         [ Links ]

2. Cuevas, A., Febrero, M. & Fraiman, R. (2006), `On the use of the bootstrap for estimating functions with functional data´, Computational Statistics and Data Analysis 51, 1063-1074.         [ Links ]

3. Cuevas, A., Febrero, M. & Fraiman, R. (2007), `Robust estimation and classification for functional data via projection-based depth notions´, Computational Statistics 22(3), 481-496.         [ Links ]

4. Febrero, M., Galeano, P. & González-Manteiga, W. (2008), `Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels´, Environmetrics 19, 331-345.         [ Links ]

5. Ferraty, F. & Romain, Y. (2010), The Oxford Handbook of Functional Data Analysis, Oxford University Press, Oxford, England.         [ Links ]

6. Ferraty, F. & Vieu, P. (2006), Nonparametric Functional Data Analysis: Theory and Practice, Series in Statistics, Springer, Berlin, Alemania.         [ Links ]

7. Fraiman, R. & Muniz, G. (2001), `Trimmed means for functional data´, Test 10(2), 419-440.         [ Links ]

8. Harsch, M., Karger-Kocsis, J. & Holst, M. (2007), `Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin´, European Polymer Journal 43, 1168-1178.         [ Links ]

9. Hsiue, G. H., Chen, J. K. & Liu, Y. L. (2000), `Synthesis and characterization of nanocomposite of polyimide-silica hybrid film nanoaqueous sol-gel process´, Journal of Applied Polymer Science 76, 1609-1618.         [ Links ]

10. Lee, A. & Lichtenhan, J. D. (1999), `Thermal and viscoelastic property of epoxy-clay and hybrid inorganic-organic epoxy nanocomposites´, Journal of Applied Polymer Science 73, 1993-2001.         [ Links ]

11. Liu, Y. L., Wei, W. L., Hsu, K. Y. & Ho, W. H. (1999), `Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis´, Thermochimica Acta 412, 139-147.         [ Links ]

12. Mehta, S., Mirabella, F. M., Bafna, A. & Rufener, K. (2004), `Thermoplastic olefin/clay nano-composites: morphology and mechanical properties´, Journal of Applied Polymer Science 92, 928-936.         [ Links ]

13. Mohammad, A. & Simon, G. P. (2006), Rubber-clay nanocomposites, `Polymer Nanocomposites´, Woodhead Publishing Limited.         [ Links ]

14. Naya, S., Cao, R. & Artiaga, R. (2003), `Local polynomial estimation of TGA derivatives using logistic regression for pilot bandwidth selection´, Thermochimica Acta 6, 319-322.         [ Links ]

15. Petrie, E. M. (2006), Epoxy Adhesive Formulations, McGraw-Hill.         [ Links ]

16. Preghenella, M., Pegoretti, A. & Migliaresi, C. (2005), `Thermo-mechanical characterization of fumed silica-epoxy nanocomposites´, Polymer 46, 12065-12072.         [ Links ]

17. Ramsay, J. O. & Silverman, B. W. (1997), Functional Data Analysis, Springer.         [ Links ]

18. Ramsay, J. O. & Silverman, B. W. (2005), Applied Functional Data Analysis, Springer.         [ Links ]

19. Schadler, L. S. (2003), Polymer-based and polymer-filled nanocomposites, `Nanocomposite Science and Technology´, Wiley-VCH, Weinheim, p. 77-135.         [ Links ]

20. Shao-Yun, F., Xi-Qiao, F., Bernd, L. & Yiu-Wing, M. (2008), `Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites´, Composites: Part B 39, 933-961.         [ Links ]

21. Tarrio-Saavedra, J., López-Beceiro, J., Naya, S. & Artiaga, R. (2008), `Effect of silica content on thermal stability of fumed silica/epoxy composites´, Polymer Degradation and Stability 93, 2133-2137.         [ Links ]

22. Yousefi, A., Lafleur, P. G. & Gauvin, R. (1997), `Kinetic studies of thermoset cure reactions: a review´, Polymer Composites 18, 157-168.         [ Links ]

23. Zhang, H., Zhang, Z., Friedrich, K. & Eger, C. (2006), `Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content´, Acta Materials 54, 1833-1842.         [ Links ]

[Recibido en abril de 2010. Aceptado en febrero de 2011]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv34n2a01,
    AUTHOR  = {Tarrío, Javier and Naya, Salvador},
    TITLE   = {{Influencia de la adición de nano y microsílice en la estabilidad térmica de una resina epoxi. Aplicaciones del ANOVA funcional}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2011},
    volume  = {34},
    number  = {2},
    pages   = {211-230}
}

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License