SciELO - Scientific Electronic Library Online

 
vol.34 issue2Skeptical and Optimistic Robust Priors for Clinical TrialsEstimation of the Production Functional Form, Returns to Scale and Technical Efficiency in Colombian Coffee Zone by Means Stochastic Frontier author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.34 no.2 Bogotá June 2011

 

A Multivariate Analysis Approach to Forecasts Combination. Application to Foreign Exchange (FX) Markets

Una aproximación a la combinación de pronósticos basada en técnicas de análisis multivariante

CARLOS G. MATÉ1

1Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI), Instituto de Investigación Tecnológica (IIT), Madrid, España. Professor and Researcher. Email: cmate@upcomillas.es


Abstract

Forecasting is characterized by the availability of a lot of methods and the fact that technological and economic forecast horizons are increasingly more different from each other. Combining forecasts is an adequate methodology for handling the above scenario, which is conceptually suitable for the application of several methods of multivariate analysis. This paper reviews some main problems in combining forecasts efficiently from the multivariate analysis view. In particular, a methodology to produce combined forecasts with a large number of forecasts is proposed. The usefulness of such a methodology is assessed in exchange rates forecasting. Further research is suggested for finance as well as for other practical contexts such as energy markets.

Key words: Combining forecasting, Factor analysis, Forecasting methodology, Principalcomponents analysis, Time series.


Resumen

El cálculo de pronósticos se caracteriza por la disponibilidad de muchos métodos y porque los horizontes de los pronósticos o las predicciones (económicas, tecnológicas, etc.) son cada vez más diferentes. Combinar pronósticos es una metodología adecuada para manejar el escenario anterior, el cual es conceptualmente adecuado para la aplicación de varios métodos de análisis multivariante. Este artículo revisa algunos problemas principales al combinar pronósticos de manera eficiente, empleando el marco del análisis multivariante. En concreto, se propone una metodología para generar pronósticos combinados con un gran número de pronósticos y se analiza una aplicación al mercado de divisas. Se valora la utilidad de esta metodología en finanzas y varios contextos prácticos, abriéndose posibilidades futuras de investigación a otros contextos aplicados, como los mercados de energía.

Palabras clave: análisis de componentes principales, análisis factorial, combinar pronósticos, metodología para pronósticos, series temporales.


Texto completo disponible en PDF


References

1. Andrawis, R. R., Atiya, A. F. & El-Shishiny, H. (2011), `Combination of long term and short term forecasts, with application to tourism demand forecasting´, International Journal of Forecasting. Article in Press.         [ Links ]

2. Arinze, B. (1994), `Selecting appropriate forecasting models using rule induction´, Omega 22(6), 647-658.         [ Links ]

3. Armstrong, J. S. (2001), Combined forecasts, `Principles of Forecasting: A Handbook for Researchers and Practitioners´, Kluwer Academic Publishers, Norwell, MA.         [ Links ]

4. Armstrong, J. S., Adya, M. & Collopy, F. (2001), Combined forecasts, `Principles of Forecasting: A Handbook for Researchers and Practitioners´, Kluwer Academic Publishers, Norwell, MA.         [ Links ]

5. Bank for International Settlements, (2001), `Central bank survy of foreign exhcange and derivatives market activity in april 2001´, Press release, 31/2001E, Bank for International Settlements.         [ Links ]

6. Basilevsky, A. (2004), Statistical Factor Analysis and Related Methods. Theory and Applications, John Wiley & Sons, New York.         [ Links ]

7. Bates, J. & Granger, C. (1969), `The combination of forecasts´, Operations Research Quarterly 20(6), 451-468.         [ Links ]

8. Bunn, D. W. (1988), `Combining forecasts´, European Journal of Operational Research 33(3), 223-229.         [ Links ]

9. Bunn, D. W. (1989), `Forecasting with more than one model´, Journal of Forecasting 8(3), 161-166.         [ Links ]

10. Clemen, R. T. (1989), `Combining forecasts: a review and annotated bibliography´, International Journal of Forecasting 5(4), 559-583.         [ Links ]

11. Clemen, R. T. & Winkler, R. L. (1986), `Combining economic forecasts´, Journal of Business and Economic Statistics 4, 39-46.         [ Links ]

12. Collopy, F., Adya, M. & Armstrong, J. S. (2001), Expert Systems for Forecasting. In Principles of Forecasting: A Handbook for Researchers and Practitioners, Kluwer Academic Publishers, Norwell, MA.         [ Links ]

13. Collopy, F. & Armstrong, J. S. (1992), `Rule-based forecasting: development and validation of an expert system approach to combining time series extrapolations´, Management Science 38(10), 1392-1414.         [ Links ]

14. Diebold, F. X. (2001), Elements of Forecasting, South-Western, Cincinantti, Ohio.         [ Links ]

15. Donaldson, R. G. & Kamstra, M. (1996), `Forecast combining with neural networks´, Journal of Forecasting 15(1), 49-61.         [ Links ]

16. Dunis, C. & Williams, M. (2005), `Modelling and trading the EUR/USD exchange rate: do neural network models perform better?´, Derivatives Use, Trading and Regulation 8(3), 211-239.         [ Links ]

17. Elliott, G., Granger, C. W. J. & Timmerman, A. (2006), Handbook of Economic Forecasting, Elsevier, Amsterdam.         [ Links ]

18. Eun, C. S. & Sabherwal, S. (2002), `Forecasting exchange rates: do banks know better?´, Global Finance Journal 13(2), 195-215.         [ Links ]

19. Gorsuch, R. L. (1983), Factor Analysis, Second edn, Lawrence Erlbaum Associates, Hillsdale, New Jersey.         [ Links ]

20. Granger, C. W. J. & Ramanathan, R. (1984), `Improved methods of combining forecasts´, Journal of Forecasting 3(2), 197-204.         [ Links ]

21. Hahn, H., Meyer-Nieberg, S. & Pickl, S. (2009), `Electric load forecasting methods: tools for decision making´, European Journal of Operational Research 199(3), 902-907.         [ Links ]

22. Hair, J. F. J., Anderson, R. E., Tatham, R. L. & Black, W. C. (1998), Multivariate Data Analysis with Readings, 5th edn, Prentice Hall: Englewood Cliffs, New Jersey.         [ Links ]

23. Jobson, J. D. (1992), Applied Multivariate Data Analysis. Vol. II: Categorical and Multivariate Methods, Springer-Verlag, New York.         [ Links ]

24. Johnson, R. A. & Wichern, D. W. (2002), Applied Multivariate Statistical Analysis, 5th edn, Prentice Hall: Englewood Cliffs, New Jersey.         [ Links ]

25. Kang, I. B. (2003), `Multi-period forecasting using different models for different horizons: an application to U.S. economic time series data´, International Journal of Forecasting 19(3), 387-400.         [ Links ]

26. Kapetanios, G., Labhard, V. & Price, S. (2008), `Forecast combination and the bank of England's suite of statistical forecasting models´, Economic Modelling 25(4), 772-792.         [ Links ]

27. Kilian, L. & Taylor, M. P. (2003), `Why is it difficult to beat the random walk forecast of exchange rates?´, Journal of International Economics 60(1), 85-107.         [ Links ]

28. King, M. R. & Rime, D. (2010), `The \4 trillion question: what explains FX growth since the 2007 survey?´, BIS Quarterly Review(4), 27-42.         [ Links ]

29. Kusiak, A. & Li, W. (2010), `Short-term prediction of wind power with a clustering approach´, Renewable Energy 35(10), 2362-2369.         [ Links ]

30. Makridakis, S., Wheelwright, S. C. & Hyndman, R. (1998), Forecasting Methods and Applications, John Wiley & Sons, New York.         [ Links ]

31. Makridakis, S. & Winkler, R. L. (1983), `Averages of forecasts: some empirical results´, Management Science 29, 987-996.         [ Links ]

32. Maté, C. & Calderón, R. (2000), `Exploring the characteristics of rotating electric machines with factor analysis´, Journal of Applied Statistics 27(8), 991 - 1006.         [ Links ]

33. Pindyck, R. S. (1999), `Long-run evolution of energy prices´, Energy Journal 20(2), 1-27.         [ Links ]

34. Poncela, P., Rodríguez, J., Sánchez-Mangas, R. & Senra, E. (2011), `Forecast combination through dimension reduction techniques´, International Journal of Forecasting 27(2), 224-237.         [ Links ]

35. Posen, A. S. (2004), `Avoiding a currency war´, The International Economy, 10-15.         [ Links ]

36. Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F. & Brace, C. (1997), `Short-run forecasts of electricity loads and peaks´, International Journal of Forecasting 13(2), 161-174.         [ Links ]

37. Rapach, D. E. & Strauss, J. K. (2008), `Forecasting U.S. employment growth using forecast combining methods´, Journal of Forecasting 27(1), 75-93.         [ Links ]

38. Rencher, A. C. (2002), Methods of Multivariate Analysis, Second edn, John Wiley & Sons, New York.         [ Links ]

39. Sánchez-Ubeda, E. F. & Berzosa, A. (2007), `Modeling and forecasting industrial end-use natural gas consumption´, Energy Economics 29(4), 710-742.         [ Links ]

40. Tabachnik, B. G. & Fidell, L. (1996), Using Multivariate Statistics, 3rd edn, HarperCollins Publishers, New York.         [ Links ]

41. Timmerman, A. (2006), Forecast combinations, `Handbook of Economic Forecasting´, Vol. 1, Elsevier, Amsterdam.         [ Links ]

42. Venkatachalam, A. R. & Sohl, J. E. (1999), `An intelligent model selection and forecasting system´, Journal of Forecasting 18(3), 167-180.         [ Links ]

43. Winkler, R. L. & Makridakis, S. (1983), `The combination of forecasts´, Journal of the Royal Statistical Society, Series A 146, 150-157.         [ Links ]

44. Winklhofer, H., Diamantopoulos, A. & Witt, S. (1996), `Forecasting practice: a review of the empirical literature and an agenda for future research´, International Journal of Forecasting 12(2), 193-221.         [ Links ]

45. Zhao, J. H., Dong, Z. Y., Xu, Z. & Wong, K. P. (2008), `A statistical approach for interval forecasting of the electricity price´, IEEE Transactions on Power Systems 23(2), 267-276.         [ Links ]

46. de Menezes, L. M., Bunn, D. W. & Taylor, J. W. (2000), `Review of guidelines for the use of combined forecasts´, European Journal of Operational Research 120(1), 190-204.         [ Links ]

[Recibido en septiembre de 2010. Aceptado en abril de 2011]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv34n2a07,
    AUTHOR  = {Maté, Carlos G.},
    TITLE   = {{A Multivariate Analysis Approach to Forecasts Combination. Application to Foreign Exchange (FX) Markets}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2011},
    volume  = {34},
    number  = {2},
    pages   = {347-375}
}

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License