Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Rev.Colomb.Estad. vol.35 no.1 Bogotá Jan./June 2012
1Universidad Simón Bolívar, Departamento de Matemáticas Puras y Aplicadas, Caracas, Venezuela. Professor. Email: fojeda@usb.ve
2Universidad Simón Bolívar, Departamento de Cómputo Científico y Estadística, Caracas, Venezuela. Professor. Email: rosalvaph@gmail.com
3Universidad Simón Bolívar, Departamento de Cómputo Científico y Estadística, Caracas, Venezuela. Universidad de Los Andes, Departamento de Matemáticas, Bogotá, Colombia. Professor. Email: aj.quiroz1079@uniandes.edu.co
4Universidad Simón Bolívar, Departamento de Matemáticas Puras y Aplicadas, Caracas, Venezuela. Professor. Email: alfrios@usb.ve
We present a non-parametric statistic based on a linearity measure of the P-P plot for the two-sample problem by adapting a known statistic proposed for goodness of fit to a univariate parametric family. A Monte Carlo comparison is carried out to compare the method proposed with the classical Wilcoxon and Ansari-Bradley statistics and the Kolmogorov-Smirnov and Cramér-von Mises statistics the two-sample problem, showing that, for certain relevant alternatives, the proposed method offers advantages, in terms of power, over its classical counterparts. Theoretically, the consistency of the statistic proposed is studied and a Central Limit Theorem is established for its distribution.
Key words: Nonparametric statistics, P-P plot, Two-sample problem.
Se presenta un estadístico no-paramétrico para el problema de dos muestras, basado en una medida de linealidad del gráfico P-P. El estadístico propuesto es la adaptación de una idea bien conocida en la literatura en el contexto de bondad de ajuste a una familia paramétrica. Se lleva a cabo una comparación Monte Carlo con los métodos clásicos de Wilcoxon y Ansari-Bradley, Kolmogorov-Smirnov y Cramér-von Mises para el probelam de dos muestras. Dicha comparación demuestra que el método propuesto ofrece una potencia superior frente a ciertas alternativas relevantes. Desde el punto de vista teórico, se estudia la consistencia del método propuesto y se establece un Teorema del Límite Central para su distribución.
Palabras clave: estadái sticos no-paramétricos, gráfico P-P, problema de dos muestras.
Texto completo disponible en PDF
References
1. Anderson, T. W. (1962), 'On the distribution of the two sample Cramér- von Mises criterion', Annals of Mathematical Statistics 33(3), 1148-1159. [ Links ]
2. Darling, D. A. (1957), 'The Kolmogorov-Smirnov, Cramér-von Mises tests', Annals of Mathematical Statistics 28(4), 823-838. [ Links ]
3. Dekking, F. M., Kraaikamp, C., Lopuhaa, H. P. & Meester, L. E. (2005), A Modern Introduction to Probability and Statistics, Springer-Verlag, London. [ Links ]
4. Gan, F. F. & Koehler, K. J. (1990), 'Goodness-of-fit tests based on P-P probability plots', Technometrics 32(3), 289-303. [ Links ]
5. Guenther, W. C. (1975), 'The inverse hypergeometric - a useful model', Statistica Neerlandica 29, 129-144. [ Links ]
6. Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J. & Ostrowski, E. (1994), A Handbook of Small Data Sets, Chapman & Hall, Boca Raton, Florida. [ Links ]
7. Hollander, M. & Wolfe, D. A. (1999), Nonparametric Statistical Methods, 2 edn, John Wiley & Sons, New York. [ Links ]
8. Johnson, N. L., Kotz, S. & Balakrishnan, N. (1995), Continuous Univariate Distributions, 2 edn, John Wiley & Sons, New York. [ Links ]
9. Kimball, B. F. (1960), 'On the choice of plotting positions on probability paper', Journal of the American Statistical Association 55, 546-560. [ Links ]
10. Liu, R. Y., Parelius, J. M. & Singh, K. (1999), 'Multivariate analysis by data depth: descriptive statistics, graphics and inference', The Annals of Statistics 27(3), 783-858. [ Links ]
11. Mathisen, H. C. (1943), 'A method for testing the hypothesis that two samples are from the same population', The Annals of Mathematical Statistics 14, 188-194. [ Links ]
12. Penner, R. & Watts, D. G. (1991), 'Mining information', The Annals of Statistics 45(1), 4-9. [ Links ]
13. R Development Core Team, (2011), 'R: a language and environment for statistical computing'. Vienna, Austria. *http://www.R-project.org/ [ Links ]
14. Randles, R. H. & Wolfe, D. A. (1979), Introduction to the Theory of Nonparametric Statistics, Krieger Publishing, Malabar, Florida. [ Links ]
15. Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, John Wiley and Sons, New York. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCEv35n1a01,
AUTHOR = {Ojeda, Francisco M. and Pulido, Rosalva L. and Quiroz, Adolfo J. and Ríos, Alfredo J.},
TITLE = {{Linearity Measures of the P-P Plot in the Two-Sample Problem}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2012},
volume = {35},
number = {1},
pages = {1-14}
}