SciELO - Scientific Electronic Library Online

 
vol.35 issue3A modified Cucconi Test for Location and Scale Change AlternativesGoodness of Fit Tests for the Gumbel Distribution with Type II right Censored data author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.35 no.3 Bogotá July/Dec. 2012

 

geofd: An R Package for Function-Valued Geostatistical Prediction

geofd: un paquete R para predicción geoestadística de datos funcionales

RAMÓN GIRALDO1, JORGE MATEU2, PEDRO DELICADO3

1Universidad Nacional de Colombia, Sciences Faculty, Department of Statistics, Bogotá, Colombia. Associate professor. Email: rgiraldoh@unal.edu.co
2Universitat Jaume I, Department of Mathematics, Castellón, Spain. Professor. Email: mateu@mat.uji.es
3Universitat Politècnica de Catalunya, Department of Statistics and Operations Research, Barcelona, Spain. Associate professor. Email: pedro.delicado@upc.edu


Abstract

Spatially correlated curves are present in a wide range of applied disciplines. In this paper we describe the R package geofd which implements ordinary kriging prediction for this type of data. Initially the curves are pre-processed by fitting a Fourier or B-splines basis functions. After that the spatial dependence among curves is estimated by means of the trace-variogram function. Finally the parameters for performing prediction by ordinary kriging at unsampled locations are by estimated solving a linear system based estimated trace-variogram. We illustrate the software analyzing real and simulated data.

Key words: Functional data, Smoothing, Spatial data, Variogram.


Resumen

Curvas espacialmente correlacionadas están presentes en un amplio rango de disciplinas aplicadas. En este trabajo se describe el paquete R geofd que implementa predicción por kriging ordinario para este tipo de datos. Inicialmente las curvas son suavizadas usando bases de funciones de Fourier o B-splines. Posteriormente la dependencia espacial entre las curvas es estimada por la función traza-variograma. Finalmente los parámetros del predictor kriging ordinario son estimados resolviendo un sistema de ecuaciones basado en la estimación de la función traza-variograma. Se ilustra el paquete analizando datos reales y simulados.

Palabras clave: datos funcionales, datos espaciales, suavizado, variograma.


Texto completo disponible en PDF


References

1. Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N. & Caroll, R. (2008), 'Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis', Biometrics 64, 64-73.         [ Links ]

2. Box, G. & Jenkins, G. (1976), Time Series Analysis., Holden Day, New York.         [ Links ]

3. Cressie, N. (1993), Statistics for Spatial Data, John Wiley & Sons, New York.         [ Links ]

4. Cuevas, A., Febrero, M. & Fraiman, R. (2004), 'An ANOVA test for functional data.', Computational Statistics and Data Analysis 47, 111-122.         [ Links ]

5. Delicado, P., Giraldo, R., Comas, C. & Mateu, J. (2010), 'Statistics for spatial functional data: some recent contributions', Environmetrics 21, 224-239.         [ Links ]

6. Ferraty, F. & Vieu, P. (2006), Nonparametric Functional Data Analysis. Theory and Practice, Springer, New York.         [ Links ]

7. Giraldo, R. (2009), Geostatistical Analysis of Functional Data, PhD thesis, Universitat Politècnica de Catalunya.         [ Links ]

8. Giraldo, R., Delicado, P. & Mateu, J. (2010), 'Continuous time-varying kriging for spatial prediction of functional data: an environmental application', Journal of Agricultural, Biological, and Environmental Statistics 15(1), 66-82.         [ Links ]

9. Giraldo, R., Delicado, P. & Mateu, J. (2011), 'Ordinary kriging for function-valued spatial data', Environmental and Ecological Statistics 18(3), 411-426.         [ Links ]

10. Goulard, M. & Voltz, M. (1993), Geostatistical interpolation of curves: a case study in soil science, 'Geostatistics Tróia 92', Vol. 2, Kluwer Academc Press, p. 805-816.         [ Links ]

11. Grosjean, P. (2010), SciViews-R: A GUI API for R, UMONS, Mons, Belgium. *http://www.sciviews.org/SciViews-R         [ Links ]

12. MATLAB, (2010), version 7.10.0 (R2010a), The MathWorks Inc., Natick, Massachusetts.         [ Links ]

13. Malfait, N. & Ramsay, J. (2003), 'The historical functional linear model', The Canadian Journal of Statistics 31(2), 115-128.         [ Links ]

14. Myers, D. (1982), 'Matrix formulation of co-kriging', Mathematical Geology 14(3), 249-257.         [ Links ]

15. Nerini, D., Monestiez, P. & Manté, C. (2010), 'Cokriging for spatial functional data', Journal of Multivariate Analysis 101(2), 409-418.         [ Links ]

16. Ramsay, J., Hooker, G. & Graves, S. (2009), Functional Data Analysis with R and MATLAB, Springer, New York.         [ Links ]

17. Ramsay, J. & Silverman, B. (2005), Functional Data Analysis. Second edition, Springer, New York.         [ Links ]

18. Ramsay, J., Wickham, H., Graves, S. & Hooker, G. (2010), fda: Functional Data Analysis. R package version 2.2.6. *http://cran.r-project.org/web/packages/fda         [ Links ]

19. Ribeiro, P. & Diggle, P. (2001), 'GeoR: a package for geostatistical analysis', R-NEWS 1(2), 15-18. *http://cran.R-project.org/doc/Rnews         [ Links ]

20. R Development Core Team, (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org.         [ Links ]

21. Staicu, A., Crainiceanu, C. & Carroll, R. (2010), 'Fast methods for spatially correlated multilevel functional data', Biostatistics 11(2), 177-194.         [ Links ]

22. Ver Hoef, J. & Cressie, N. (1993), 'Multivariable spatial prediction', Mathematical Geology 25(2), 219-240.         [ Links ]

23. Wackernagel, H. (1995), Multivariate Geostatistics: An Introduction with Applications, Springer-Verlag, Berlin.         [ Links ]

24. Yamanishi, Y. & Tanaka, Y. (2003), 'Geographically weighted functional multiple regression analysis: a numerical investigation', Journal of Japanese Society of Computational Statistics 15, 307-317.         [ Links ]


[Recibido en octubre de 2011. Aceptado en agosto de 2012]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv35n3a04,
    AUTHOR  = {Giraldo, Ramón and Mateu, Jorge and Delicado, Pedro},
    TITLE   = {{geofd: An R Package for Function-Valued Geostatistical Prediction}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2012},
    volume  = {35},
    number  = {3},
    pages   = {385-407}
}