SciELO - Scientific Electronic Library Online

 
vol.45 issue2Application of Binary Response Regression Models to Detect Factors Influencing the Occurrence of Infection in Dental SurgeriesRobust Post-Hoc Multiple Comparisons: Skew t Distributed Error Terms author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.45 no.2 Bogotá July/Dec. 2022  Epub Feb 01, 2023

https://doi.org/10.15446/rce.v45n2.92390 

Artículos originales de investigación

Spatial Econometric Models: A Bayesian Approach

Modelos econométricos espaciales: una aproximación bayesiana

Edilberto Cepeda-Cuervo1  a 

Jorge Armando Sicacha2  b 

1 Department of Statistics, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá D.C., Colomb

2 Department or School, Faculty or Division, University or Institution, City, Country


Abstract

In this paper we propose Bayesian methods to fit econometric regression models, including those where the variability is assumed to follow a regression structure. We formulate the main functions of the statistical R-package BSPADATA, developed according to the proposed methods to obtain posteriori parameter inferences. After that, we include results of simulated studies to illustrate the use of this package and the performance of the proposed methods. Finally, we provide studies to illustrate the applications of the models and compare our results with that obtained by maximum likelihood.

Key words: Bayesian methods; CAR models; Spatial econometric models; SAR models

Resumen

En este artículo proponemos métodos bayesianos para ajustar modelos de regresión econométrica, incluidos aquellos en los que la variabilidad sigue una estructura de regresión. Formulamos las principales funciones del Rpackage estadístico BSPADATA, desarrollado según los métodos propuestos para obtener inferencias de parámetros a posteriori. Luego, incluimos resultados de estudios de simulación para ilustrar el uso de este paquete y el desempeño de los métodos propuestos. Finalmente, proporcionamos estudios para ilustrar las aplicaciones de los modelos y comparamos nuestros resultados con los obtenidos por máxima verosimilitud.

Palabras clave: Modelos econométricos espaciales; Modelos SAR; Modelos CAR; Métodos bayesianos

Full text available only in PDF format

References

Anselin, L. (1980), 'Estimation methods for spatial autoregressive structures', Regional Science Dissertation and Monograph 8. [ Links ]

Anselin, L. (1982), 'A note on small sample properties of estimators in a first-order spatial autoregressive model', Environment and Planning A 14. [ Links ]

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Kluwer Academic, Boston. [ Links ]

Anselin, L. (2001), 'Spatial econometrics', A companion to theoretical econometrics pp. 310-330. [ Links ]

Cepeda-Cuervo, E. (2001), 'Modelagem da Variabilidade em Modelos Lineales Generalizados', (Unpublished PhD thesis. Univerisidade Federal de Rio de Janeiro,Brazil) . [ Links ]

Cepeda-Cuervo, E. & Gamerman, D. (2000), 'Bayesian modeling of variance heterogeneity in normal regression models', Brazilian Journal of Probability and Statistics pp. 207-221. [ Links ]

Cepeda-Cuervo, E. & Gamerman, D. (2005), 'Bayesian methodology for modeling parameters in the two parameters exponential family', Revista Estadística 57, 93-105. [ Links ]

Gangnon, R. & Clayton, M. (1998), Bayesian Spatial Disease Clustering: An Application, Technical report, Department of Biostatistics, University of Wisconsin, Madison. [ Links ]

Hepple, L. W. (1979), Bayesian analysis of the linear model with spatial dependence, in 'Exploratory and explanatory statistical analysis of spatial data', Springer, pp. 179-199. [ Links ]

LeSage, J. (1997), 'Bayesian Estimation of Spatial Autoregressive Models', Journal of Composite Materials 16(4), 928-940. [ Links ]

LeSage, J. & Pace, R. K. (2009), Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton. [ Links ]

Neath, A. A. & Cavanaugh, J. E. (2012), 'The bayesian information criterion: background, derivation, and applications', Wiley Interdisciplinary Reviews: Computational Statistics 4. [ Links ]

Waller, L. (1996), 'Statistical power and design of focused clustering studies', Statistics in Medicine (15), 765-782. [ Links ]

Waller, L. A. & Gotway, C. A. (2004), Applied Spatial Statistics for Public Health Data, Wiley series in probability and statistics, 1 edn, John Wiley & Sons. [ Links ]

Received: December 2020; Accepted: January 2022

a Ph.D. E-mail: ecepedac@unal.edu.co

b Ms.C. E-mail: jasicachap@unal.edu.co

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License