SciELO - Scientific Electronic Library Online

 
vol.45 issue2Behavior of Some Hypothesis Tests for the Covariance Matrix of High Dimensional Data author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.45 no.2 Bogotá July/Dec. 2022  Epub Feb 02, 2023

https://doi.org/10.15446/rce.v45n2.98957 

Artículos originales de investigación

Nonparametric Prediction for Spatial Dependent Functional Data Under Fixed Sampling Design

Predicción no paramétrica para datos funcionales dependientes del espacio bajo un diseño de muestreo fijo

Mamadou Ndiaye1  a 

Sophie Dabo-Niang2  b 

Papa Ngom3  c 

1 Higher Polytechnic School (ESP), Cheikh Anta Diop University (UCAD), Dakar, Senegal

2 Department of Mathematics, University of Lille, Villeneuve d'ascq, France

3 Department of Mathematics and Computer Science, Faculty of Sciences and Technologies, Cheikh Anta Diop University, Dakar, Senegal


Abstract

In this work, we consider a nonparametric prediction of a spatio-functional process observed under a non-random sampling design. The proposed predictor is based on functional regression and depends on two kernels, one of which controls the spatial structure and the other measures the proximity between the functional observations. It can be considered, in particular, as a supervised classification method when the variable of interest belongs to a predefined discrete finite set. The mean square error and almost complete (or sure) convergence are obtained when the sample considered is a locally stationary a-mixture sequence. Numerical studies were performed to illustrate the behavior of the proposed predictor. The finite sample properties based on simulated data show that the proposed prediction method outperforms the cl 1 predictor which not taking into account the spatial structure.

Key words: Functional dependent data; Fixed design; Non-parametric prediction; Supervised classification

Resumen

En este trabajo consideramos una predicción no paramétrica de un proceso espacial y funcional observado bajo un diseño de muestreo no aleatorio. El predictor propuesto se basa en la regresión funcional y depende de dos núcleos, uno de los cuales controla la estructura espacial y el otro mide la proximidad entre las observaciones funcionales. Esta metodología puede considerarse, en particular, como una nueva herramienta de clasificación supervisada cuando la variable de interés pertenece a un conjunto finito discreto predefinido. El error cuadrático medio y la convergencia casi completa (o certera) se obtienen cuando la muestra considerada es una a realizado estudios numéricos para ilustrar el comportamiento de nuestro predictor. Esta aplicación mediante simulación de un modelo numérico muestra que el método de predicción propuesto supera al predictor clásico que no tiene en cuenta la estructura espacial.

Palabras clave: Clasificación supervisada; Datos funcionales dependientes; Diseño fijo; Predicción no paramétrica

Full text available only in PDF format

References

Ahmed, M. S., Ndiaye, M., Attouch, M. & Dabo-Niang, S. (2019), 'k-nearest neighbors prediction and classification for spatial data', preprinted . [ Links ]

Ballari, D., Giraldo, R., Campozano, L. & Samaniego, E. (2018), 'Spatial functional data analysis for regionalizing precipitation seasonality and intensity in a sparsely monitored region: Unveiling the spatio-temporal dependencies of precipitation in ecuador', International Journal of Climatology 38(8), 3337-3354. [ Links ]

Baouche, R. (2015), Prediction des Paramètres Physiques des Couches Pétrolifères par Analyse des Réseaux de Neurones et Analyse Faciologique., PhD thesis, université M'hamed Boug Boumerdès. [ Links ]

Biau, G. & Cadre, B. (2004), 'Nonparametric spatial prediction', Statistical Inference for Stochastic Processes 7(3), 327-349. [ Links ]

Biau, G. & Devroye, L. (2015), Lectures on the nearest neighbor method, Springer. [ Links ]

Bosq, D. (1998), Nonparametric Statistics for Stochastic Processes: Estimation and prediction, Vol. 110 of Lecture Notes in Statist., 2nd edn, Springer-Verlag, New York. [ Links ]

Carbon, M., Tran, L. T. & Wu, B. (1997), 'Kernel density estimation for random fields', Statistics & Probability Letters 36(2), 115-125. [ Links ]

Chen, W., Pourghasemi, H. R., Zhang, S. & Wang, J. (2019), A comparative study of functional data analysis and generalized linear model data-mining techniques for landslide spatial modeling, in 'Spatial Modeling in GIS and R for Earth and Environmental Sciences', Elsevier, pp. 467-484. [ Links ]

Cressie, N. A. C. (1993), Statistics for Spatial Data, Vol. 110 of Wiley Series in Probability and Statistics, revised edn, Wiley-Interscience. [ Links ]

Cuesta-Albertos, J. A., Febrero-Bande, M. & de la Fuente, M. O. (2017), 'The ddG-classifier in the functional setting', Test 26(1), 119-142. [ Links ]

Cuevas, A., Febrero, M. & Fraiman, R. (2007), 'Robust estimation and classification for functional data via projection-based depth notions', Computational Statistics 22(3), 481-496. [ Links ]

Dabo-Niang, S., Hamdad, L., Ternynck, C. & Yao, A.-F. C. C. (2014), 'A kernel spatial density estimation allowing for the analysis of spatial clustering: application to Monsoon Asia Drought Atlas data', Stock. Environ. Res. Risk Assess 28(8), 2075-2099. [ Links ]

Dabo-Niang, S., Rachdi, M. & Yao, A.-F. (2011), 'Kernel regression estimation for spatial functional random variables', Far East Journal of Theoretical Statistics 37(2), 77-113. [ Links ]

Dabo-Niang, S., Ternynck, C. & Yao, A.-F. (2016), 'Nonparametric prediction of spatial multivariate data', Journal of Nonparametric Statistics 28(2), 428-458. [ Links ]

Dabo-Niang, S. & Yao, A.-F. (2007), 'Kernel regression estimation for continuous spatial processes', Mathematical Methods of Statistics 16(4), 298-317. [ Links ]

Dabo-Niang, S. & Yao, A.-F. (2013), 'Kernel spatial density estimation in infinite dimension space', Metrika 76(1), 19-52. [ Links ]

Dabo-Niang, S., Yao, A.-F., Pischedda, L., Cuny, P. & Gilbert, F. (2010), 'Spatial mode estimation for functional random fields with application to bioturbation problem', Stochastic Environmental Research and Risk Assessment 24(4), 487-497. [ Links ]

Devroye, L., Gyorfi, L., Krzyzak, A. & Lugosi, G. (1994), 'On the strong universal consistency of nearest neighbor regression function estimates', The Annals of Statistics . [ Links ]

Devroye, L. & Wagner, T. J. (1982), '8 nearest neighbor methods in discrimination', Handbook of Statistics . [ Links ]

El Machkouri, M. (2007), 'Nonparametric regression estimation for random fields in a fixed-design', Stat. Inference Stoch. Process. 10(1), 29-47. [ Links ]

El Machkouri, M. (2011), 'Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields', Statistical Inference for Stochastic Processes 14(1), 73-84. [ Links ]

El Machkouri, M. & Stoica, R. (2010), 'Asymptotic normality of kernel estimates in a regression model for random fields', J. Nonparametr. Stat. 22(8), 955-971. [ Links ]

Embling, C. B., Illian, J., Armstrong, E., van der Kooij, J., Sharpies, J., Camphuysen, K. C. J. & Scott, B. E. (2012), 'Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach', Journal of Applied Ecology 49(2), 481-492. [ Links ]

Escabias, M., Aguilera, A. & Valderrama, M. (2005), 'Modeling environmental data by functional principal component logistic regression', Environmetrics: The official journal of the International Environmetrics Society 16(1), 95-107. [ Links ]

Ferraty, F. & Vieu, P. (2006), Nonparametric Functional Data Analysis: Theory and Practice, Springer Series in Statistics, Springer. [ Links ]

Francisco-Fernandez, M. & Opsomer, J. D. (2005), 'Smoothing parameter selection methods for nonparametric regression with spatially correlated errors', Canadian Journal of Statistics 33(2), 279-295. [ Links ]

Francisco-Fernández, M., Quintela-del Río, A. & Fernández-Casal, R. (2012), 'Nonparametric methods for spatial regression, an application to seismic events', Environmetrics 23(1), 85-93. [ Links ]

Gardner, B., Sullivan, P. J., Morreale, S. J. & Epperly, S. P. (2008), 'Spatial and temporal statistical analysis of bycatch data: patterns of sea turtle bycatch in the North Atlantic', Canadian Journal of Fisheries and Aquatic Sciences 65(11), 2461-2470. [ Links ]

Giraldo, R., Delicado, P. & Mateu, J. (2011), 'Ordinary kriging for function-valued spatial data', Environmental and Ecological Statistics 18(3), 411-426. [ Links ]

Hallin, M., Lu, Z. & Tran, L. T. (2004), 'Local linear spatial regression', The Annals of Statistics 32(6), 2469-2500. [ Links ]

Hastie, T. & Tibshirani, R. (1996), 'Discriminant adaptive nearest neighbor classification and regression', Advances in Neural Information Processing Systems . [ Links ]

Heppell, S. S., Crowder, L. B. & Menzel, T. R. (1999), Life table analysis of long-lived marine species with implications for conservation and management, in 'American Fisheries Society Symposium', Vol. 23, pp. 137-148. [ Links ]

Ignaccolo, R., Ghigo, S. & Bande, S. (2013), 'Functional zoning for air quality', Environmental and ecological statistics 20(1), 109-127. [ Links ]

Klemelá, J. (2008), 'Density estimation with locally identically distributed data and with locally stationary data', J. Time Ser. Anal. 29(1), 125-141. http://dx.doi.org/10.1111/j.1467-9892.2007.00547.xLinks ]

Lefort, R., Fablet, R., Berger, L. & Boucher, J.-M. (2011), 'Spatial statistics of objects in 3-d sonar images: application to fisheries acoustics', IEEE Geoscience and Remote Sensing Letters 9(1), 56-59. [ Links ]

Li, X., Ghosal, S. et al. (2018), 'Bayesian classification of multiclass functional data', Electronic Journal of Statistics 12(2), 4669-4696. [ Links ]

Luan, J., Zhang, C, Xu, B., Xue, Y. & Ren, Y. (2018), 'Modelling the spatial distribution of three portunidae crabs in haizhou bay, China', PloS one 13(11), e0207457. [ Links ]

Masry, E. (2005), 'Nonparametric regression estimation for dependent functional data: asymptotic normality', Stochastic Process. Appl. 115(1), 155-177. [ Links ]

Mateu, J. & Romano, E. (2017), 'Advances in spatial functional statistics'. [ Links ]

Menafoglio, A. (2021), Spatial statistics for distributional data in bayes spaces: From object-oriented kriging to the analysis of warping functions, in 'Advances in Compositional Data Analysis', Springer International Publishing, pp. 207-224. [ Links ]

Menafoglio, A., Pigoli, D. & Secchi, P. (2022), 'Mathematical foundations of functional kriging in Hilbert spaces and riemannian manifolds', Geo statistical Functional Data Analysis pp. 27-54. [ Links ]

Menafoglio, A., Secchi, P. & Rosa, M. D. (2013), 'A universal kriging predictor for spatially dependent functional data of a Hilbert space', Electronic Journal of Statistics 7(none). [ Links ]

Menezes, R., García-Soidán, P. & Ferreira, C. (2010), 'Nonparametric spatial prediction under stochastic sampling design', Journal of Nonparametric Statistics 22(3), 363-377. [ Links ]

Ndiaye, M., Dabo-Niang, S., Ngom, P., Ciré Elimane, S. & Fall, M. (2020), Contribution to spatial and functional statistics : Modelingspatio-temporal of the fishery resources of Senegal, PhD thesis, Ecole Doctórale Mathématiques et Informatique de l'Université Cheikh Anta Diop de Dakar. [ Links ]

Neaderhouser, C. C. (1980), 'Convergence of block spins defined by a random field', J. Statist. Phys. 22(6), 673-684. [ Links ]

Niku, J., Hui, F. K., Taskinen, S. & Warton, D. I. (2019), 'gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r', Methods in Ecology and Evolution 10(12), 2173-2182. [ Links ]

Niku, J., Hui, F. K., Taskinen, S. & Warton, D. I. (2021), 'Analyzing environmental-trait interactions in ecological communities with fourth-corner latent variable models', Environmetrics 32(6), e2683. [ Links ]

Oshinubi, K., , Ibrahim, F., Rachdi, M. & Demongeot, J. (2022), 'Functional data analysis: Application to daily observation of COVID-19 prevalence in france', AIMS Mathematics 7(4), 5347-5385. [ Links ]

Paredes, R. & Vidal, E. (2006), 'Learning weighted metrics to minimize nearest-neighbor classification error', IEEE Transactions on Pattern Analysis and Machine Intelligence . [ Links ]

Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O'Hara, R. B., Parris, K. M., Vesk, P. A. & McCarthy, M. A. (2014), 'Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (jsdm)', Methods in Ecology and Evolution 5(5), 397-406. [ Links ]

Rachdi, M., Laksaci, A. & Al-Awadhi, F. A. (2021), 'Parametric and nonparametric conditional quantile regression modeling for dependent spatial functional data', Spatial Statistics 43, 100498. [ Links ]

Ripley, B. (1987), Spatial point pattern analysis in ecology, in 'Develoments in Numerical Ecology', Springer, pp. 407-429. [ Links ]

Rivoirard, J., Simmonds, J., Foote, K., Fernandes, R & Bez, N. (2000), Geostatistics for estimating fish abundance, Wiley Online Library. [ Links ]

Rosenblatt, M. (1985), Stationary sequences and random fields, Birkhauser, Boston. [ Links ]

Ruiz-Medina, M. (2011), 'Spatial autoregressive and moving average Hilbertian processes', Journal of Multivariate Analysis 102(2), 292-305. [ Links ]

Ruiz-Medina, M. D., Anh, V. V., Espejo, R. M., Angulo, J. M. & Frias, M. P. (2015), 'Least-squares estimation of multifractional random fields in a Hilbert-valued context', Journal of Optimization Theory and Applications 167(3), 888-911. [ Links ]

Ruiz-Medina M, E. R. (2012), 'Spatial autoregressive functional plug-in prediction of ocean surface temperature', Stoch Environ Res Risk Assess 26(3): 335-344Links ]

Soltysiak, M., Blachnik, M. & Dabrowska, D. (2016), 'Machine-learning methods in the classification of water bodies', Environmental & Socio-economic Studies 4(2), 34-42. [ Links ]

Sørensen, H., Goldsmith, J. & Sangalli, L. M. (2013), 'An introduction with medical applications to functional data analysis', Statistics in medicine 32(30), 5222-5240. [ Links ]

Takahata, H. (1983), 'On the rates in the central limit theorem for weakly dependent random fields', Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 64(4), 445-456. [ Links ]

Ternynck, C. (2014), 'Spatial regression estimation for functional data with spatial dependency', SFDS,155, 2 . [ Links ]

Torres, J. M., Nieto, P. G., Alejano, L. & Reyes, A. (2011), 'Detection of outliers in gas emissions from urban areas using functional data analysis', Journal of hazardous materials 186(1), 144-149. [ Links ]

Tran, L. T. (1990), 'Kernel density estimation on random fields', Journal of Multivariate Analysis 34(1), 37-53. [ Links ]

Wang, J.-L., Chiou, J.-M. & Müller, H.-G. (2016), 'Functional data analysis', Annual Review of Statistics and Its Application 3, 257-295. [ Links ]

Wu, H. & Li, Y.-F. (2022), 'Clustering spatially correlated functional data with multiple scalar covariates', IEEE Transactions on Neural Networks and Learning Systems pp. 1-15. [ Links ]

Xiaoying, W., Qian, S. & Jialiang, G. (2021), Research on nonparametric classification method of functional data, in '2021 2nd International Conference on Education, Knowledge and Information Management (ICEKIM)', IEEE. [ Links ]

Yan, F., Liu, L., Li, Y., Zhang, Y., Chen, M. & Xing, X. (2015), 'A dynamic water quality index model based on functional data analysis', Ecological Indicators 57, 249-258. [ Links ]

Yates, M. C, Derry A. M. & Cristescu, M. E. (2021), 'Environmental RNA: A revolution in ecological resolution?', Trends in Ecology & Evolution 36(7), 601-609. [ Links ]

Yen, J. D. L., Thomson, J. R., Paganin, D. M., Keith, J. M. & Nally R. M. (2014), 'Function regression in ecology and evolution: FREE', Methods in Ecology and Evolution 6(1), 17-26. [ Links ]

Young, M. & Carr, M. H. (2015), 'Application of species distribution models to explain and predict the distribution, abundance and assemblage structure of nearshore temperate reef fishes', Diversity and Distributions 21(12), 1428-1440. [ Links ]

Younso, A. (2017), 'On the consistency of a new kernel rule for spatially dependent data', Statistics & Probability Letters . [ Links ]

Zhang, H. (2019), Topics in functional data analysis and machine learning predictive inference, PhD thesis, Iowa State University. [ Links ]

Received: November 2021; Accepted: May 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License