Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Integración
Print version ISSN 0120-419X
Integración - UIS vol.34 no.2 Bucaramanga July/Dec. 2016
https://doi.org/10.18273/revint.v34n2-2016001
DOI: http://dx.doi.org/10.18273/revint.v34n2-2016001
Osillations in seasonal SIR models with
saturated treatment
L. ROCÍO GONZÁLEZ-RAMÍREZa, b, OSVALDO OSUNA a*,
GEISER VILLAVICENCIO-PULIDOc
a Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Física y
Matemáticas, Morelia, México.
b Conacyt, D.F., México.
c Universidad Autónoma Metropolitana Unidad Lerma, Departamento de Ciencias
Ambientales, Estado de México, México.
Abstract In this work, we give some conditions for the existen e of periodic orbits for a Susceptible-Infectious-Recovered (SIR) model with seasonal saturated incidence functions and saturated treatment rate. We use Leray-Schauder degree theory to prove the existence of periodic orbits.
Keywords: Leray-Schauder degree, SIR models, periodic orbits, reproductive number.
MSC2010: 37J45, 34C25, 92D30, 34D23.
Oscilaciones en modelos SIR estacionales con
tratamiento saturado
Resumen. En este trabajo presentamos condiciones suficientes para la existencia de soluciones periódicas en modelos epidemiológicos estacionales de tipo SIR con funciones de incidencia y de tratamiento saturados. Utilizamos la teoría de grado de Leray-Schauder para establecer la existencia de órbitas periódicas en tales modelos.
Palabras clave: Grado de Leray-Schauder, modelo SIR, órbitas periódicas, número reproductivo básico.
Texto Completo disponible en PDF
References
[1] Brown R.F., A topological introduction to nonlinear analysis, Second ed., Birkhxäuser Boston, Inc., Boston, MA, 2004. [ Links ]
[2] Capasso V. and Serio G., "A generalization of the Kermack-McKendrick deterministic epidemic model", Math. Biosci. 42 (1978), No. 1-2, 43-61. [ Links ]
[3] Gaines R.E. and Mawhin J.L., Coincidence degree and nonlinear differential equations, Springer-Verlag, Berlin-New York, 1977. [ Links ]
[4] González-Ramírez L.R., Osuna O. and Santaella-Forero R., "Periodic orbits for seasonal SIRS models with non-linear incidence rates", Electron. J. Differential Equations 2015 (2015), No. 300, 1-10. [ Links ]
[5] Katriel G., "Existence of periodic solutions for periodically forced SIR model", J. Math. Sci. (N.Y) 201 (2014), No. 3, 335-342. [ Links ]
[6] Li L., Bai Y. and Jin Z., "Periodic solutions of an epidemic model with saturated treatment", Nonlinear Dynam. 76 (2014), No. 2, 1099-1108. [ Links ]
[7] Liu W.M., Levin S.A. and Iwasa Y., "Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models", J. Math. Biol. 23 (1986), No. 2, 187-204. [ Links ]
[8] Song B., Du W. and Lou J., "Different types of backward bifurcations due to density-dependent treatments", Math. Biosci. Eng. 10 (2013), No. 5-6, 1651-1668. [ Links ]
[9] van den Driessche P. and Watmough J., "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission", Math. Biosci. 180 (2002), 29-48. [ Links ]
[10] Weber A., Weber M. and Milligan P., "Modeling epidemics caused by respiratory synctial virus (RSV)", Math. Biosci. 172 (2001), No. 2, 95-113. [ Links ]
[11] Xiao D. and Ruan S., "Global analysis of an epidemic model with non monotone incidence rate", Math. Biosci. 208 (2007), No. 2, 419-429. [ Links ]
[12] Zhang X. and Liu X., "Backward bifurcation of an epidemic model with saturated treatment function", J. Math. Anal. Appl. 348 (2008), No. 1, 433-443. [ Links ]
*E-mail: osvaldo@ifm.umich.mx
Received: 29 January 2016, Accepted: 11 May 2016.
To cite this article: L.R. González-Ramírez, O. Osuna, G. Villavicencio-Pulido, Oscillations in seasonal
SIR models with saturated treatment, Rev. Integr. Temas Mat. 34 (2016), No. 2, 125-131.