SciELO - Scientific Electronic Library Online

 
vol.34 issue2The group of automorphisms of the Fermat curveArmendariz property for skew PBW extensions and their classical ring of quotients author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Integración

Print version ISSN 0120-419X

Integración - UIS vol.34 no.2 Bucaramanga July/Dec. 2016

https://doi.org/10.18273/revint.v34n2-2016003 

DOI: http://dx.doi.org/10.18273/revint.v34n2-2016003

Sobre el segundo producto simétrico de
continuos indescomponibles y encadenables

MARÍA DE JESÚS LÓPEZ*, EMANUEL RAMÍREZ MÁRQUEZ

Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico
Matemáticas, Puebla, México.


Resumen. Alejandro Illanes preguntó si el pseudoarco P tiene hiperespacio segundo producto simétrico F2(P) único, es decir: si X es un continuo para el cual existe un homeomorfismo h : F2(P)) → F2(X), entonces, ¿es X homeomorfo al pseudoarco? En este trabajo probamos que si X es un continuo indescomponible y encadenable y Y es un continuo tal que F2(Y) es homeo- morfo a F2(X), entonces Y es indescomponible.

Palabras clave: Continuo, encadenable, indescomponible, hiperespacios, segundo producto simétrico.
MSC2010: 54B20, 54E40, 54F15.


On the second symmetric product of indecomposable
chainable continua

Abstract. Alejandro Illanes asked if the pseudoarc P has unique second symmetric product F2(P), this is, if X is a continuum such that there is a homeomorphism h : F2(P)F2(X), then, is X homeomorphic to the pseudoarc? In this paper we show that if X is an indecomposable chainable continuum and Y is a continuum such that F2(Y) is homeomorphic to F2(X), then Y is indecomposable.

Keywords: Continuum, chainable, indecomposable, hyperspaces, second symmetric product.


Texto Completo disponible en PDF


Referencias

[1] Acosta G., Hernández-Gutiérrez R. and Martínez-de-la-Vega V., "Dendrites and symmetric products", Glas. Math. Ser. III 44 (2009) No. 1, 195-210.         [ Links ]

[2] Bellamy D.P. and Lysko J.M., "Factorwise rigidity of the product of two pseudo-arcs", Topology Proc. 8 (1983), No. 1, 21-27.         [ Links ]

[3] Bing R.H., "A homogeneous indescomposable plane continuum", Duke Math. J. 15 (1948), 729-742.         [ Links ]

[4] Castañeda E. and Illanes A., "Finite graphs have unique symmetric products", Topology Appl. 153 (2006), No. 9, 1434-1450.         [ Links ]

[5] Hagopian C.L., "Mutual aposyndesis", Proc. Amer. Math. Soc. 23 (1969), 615-622.         [ Links ]

[6] Hernández-Gutiérrez R. and Martínez-de-la-Vega V., "Rigidity of symmetric products", Topology Appl. 160 (2013), No. 13, 1577-1587.         [ Links ]

[7] Herrera-Carrasco D., López M. de J. and Macías-Romero F., "Dendrites with unique symmetric products", Topology Proc. 34 (2009), 175-190.         [ Links ]

[8] Illanes A., "Dendrites with unique hyperspace F2(X)", JP J. Geom. Topol. 2 (2002), No. 1, 75-96.         [ Links ]

[9] Illanes A., "Uniqueness of hyperspaces", Questions Answers Gen. Topology 30 (2012), No. 1, 21-44.         [ Links ]

[10] Illanes A. and Martínez-Montejano J.M., "Compactications of [0,∞), with unique hyperspace Fn(X)", Glas. Mat. Ser. III 44 (2009), No. 2, 457-478.         [ Links ]

[11] Lewis W., "The pseudo-arc", Bol. Soc. Mat. Mexicana (3) 5 (1999), No. 1, 25-77.         [ Links ]

[12] Macías S., "Aposyndetic properties of symmetric products of continua", Topology Proc. 22 (1997), Spring, 281-296.         [ Links ]

[13] Macías S., Topics on continua, Chapman & Hall/CRC, Boca Raton, FL, 2005.         [ Links ]

[14] Nadler S.B., Jr., Continuum theory: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker Inc., New York, 1992.         [ Links ]

[15] Nadler S.B., Jr., Hyperespaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York-Basel, 1978.         [ Links ]

[16] Prajs J.R., "Mutual aposyndesis and products of solenoids", Topology Proc. 32 (2008), Spring, 339-349.         [ Links ]


*Email: mjlopez@fcfm.buap.mx
Recibido: 25 de mayo de 2016, Aceptado: 19 de octubre de 2016.
Para citar este artículo: M. de J. López, E. Ramírez Márquez, Sobre el segundo producto simétrico de
continuos indescomponibles y encadenables, Rev. Integr. Temas Mat. 34 (2016), No. 2, 139-146.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License