Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Integración
Print version ISSN 0120-419X
Integración - UIS vol.34 no.2 Bucaramanga July/Dec. 2016
https://doi.org/10.18273/revint.v34n2-2016003
DOI: http://dx.doi.org/10.18273/revint.v34n2-2016003
Sobre el segundo producto simétrico de
continuos indescomponibles y encadenables
MARÍA DE JESÚS LÓPEZ*, EMANUEL RAMÍREZ MÁRQUEZ
Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico
Matemáticas, Puebla, México.
Resumen. Alejandro Illanes preguntó si el pseudoarco P tiene hiperespacio segundo producto simétrico F2(P) único, es decir: si X es un continuo para el cual existe un homeomorfismo h : F2(P)) → F2(X), entonces, ¿es X homeomorfo al pseudoarco? En este trabajo probamos que si X es un continuo indescomponible y encadenable y Y es un continuo tal que F2(Y) es homeo- morfo a F2(X), entonces Y es indescomponible.
Palabras clave: Continuo, encadenable, indescomponible, hiperespacios, segundo producto simétrico.
MSC2010: 54B20, 54E40, 54F15.
On the second symmetric product of indecomposable
chainable continua
Abstract. Alejandro Illanes asked if the pseudoarc P has unique second symmetric product F2(P), this is, if X is a continuum such that there is a homeomorphism h : F2(P) → F2(X), then, is X homeomorphic to the pseudoarc? In this paper we show that if X is an indecomposable chainable continuum and Y is a continuum such that F2(Y) is homeomorphic to F2(X), then Y is indecomposable.
Keywords: Continuum, chainable, indecomposable, hyperspaces, second symmetric product.
Texto Completo disponible en PDF
Referencias
[1] Acosta G., Hernández-Gutiérrez R. and Martínez-de-la-Vega V., "Dendrites and symmetric products", Glas. Math. Ser. III 44 (2009) No. 1, 195-210. [ Links ]
[2] Bellamy D.P. and Lysko J.M., "Factorwise rigidity of the product of two pseudo-arcs", Topology Proc. 8 (1983), No. 1, 21-27. [ Links ]
[3] Bing R.H., "A homogeneous indescomposable plane continuum", Duke Math. J. 15 (1948), 729-742. [ Links ]
[4] Castañeda E. and Illanes A., "Finite graphs have unique symmetric products", Topology Appl. 153 (2006), No. 9, 1434-1450. [ Links ]
[5] Hagopian C.L., "Mutual aposyndesis", Proc. Amer. Math. Soc. 23 (1969), 615-622. [ Links ]
[6] Hernández-Gutiérrez R. and Martínez-de-la-Vega V., "Rigidity of symmetric products", Topology Appl. 160 (2013), No. 13, 1577-1587. [ Links ]
[7] Herrera-Carrasco D., López M. de J. and Macías-Romero F., "Dendrites with unique symmetric products", Topology Proc. 34 (2009), 175-190. [ Links ]
[8] Illanes A., "Dendrites with unique hyperspace F2(X)", JP J. Geom. Topol. 2 (2002), No. 1, 75-96. [ Links ]
[9] Illanes A., "Uniqueness of hyperspaces", Questions Answers Gen. Topology 30 (2012), No. 1, 21-44. [ Links ]
[10] Illanes A. and Martínez-Montejano J.M., "Compactications of [0,∞), with unique hyperspace Fn(X)", Glas. Mat. Ser. III 44 (2009), No. 2, 457-478. [ Links ]
[11] Lewis W., "The pseudo-arc", Bol. Soc. Mat. Mexicana (3) 5 (1999), No. 1, 25-77. [ Links ]
[12] Macías S., "Aposyndetic properties of symmetric products of continua", Topology Proc. 22 (1997), Spring, 281-296. [ Links ]
[13] Macías S., Topics on continua, Chapman & Hall/CRC, Boca Raton, FL, 2005. [ Links ]
[14] Nadler S.B., Jr., Continuum theory: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker Inc., New York, 1992. [ Links ]
[15] Nadler S.B., Jr., Hyperespaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York-Basel, 1978. [ Links ]
[16] Prajs J.R., "Mutual aposyndesis and products of solenoids", Topology Proc. 32 (2008), Spring, 339-349. [ Links ]
*Email: mjlopez@fcfm.buap.mx
Recibido: 25 de mayo de 2016, Aceptado: 19 de octubre de 2016.
Para citar este artículo: M. de J. López, E. Ramírez Márquez, Sobre el segundo producto simétrico de
continuos indescomponibles y encadenables, Rev. Integr. Temas Mat. 34 (2016), No. 2, 139-146.