Introducción
El objetivo de la teoría de los sistemas dinámicos es estudiar el estado y la evolución de los sistemas, lo cual se logra mediante la representación gráfica de las variables dinámicas en el denominado espacio de fases, originando estructuras geométricas conocidas como atractores. Existen tres tipos de atractores: cíclicos, puntuales y caóticos1. La dimensión fractal es la medida con la cual se observa la irregularidad del atractor caótico2. Por otro lado, la medida de las posibilidades de que ocurra un evento ha sido determinada por la teoría de la probabilidad, pues es por medio de esta que se cuantifica el acaecimiento o no de un hecho, asignándole valor entre 0 y 13,4. Desde conceptos de la Física y la Matemática como los mencionados, se han logrado establecer diagnósticos de la dinámica cardíaca fetal y del adulto4-6.
En el mundo, la principal causa de mortalidad corresponde a las enfermedades cardiovasculares (ECV); las formas isquémicas como el infarto agudo de miocardio (IAM) son las más relacionadas con letalidad7. De acuerdo con la Organización Mundial de la Salud, el 1,9% de las muertes al año en el continente americano obedecen a las ECV; también, se ha estimado que una de cada cuatro personas padece este tipo de enfermedad, y se proyecta que para el año 2030 pueden llegar a morir 23.6 millones de personas por esta condición8.
El dispositivo Holter fue creado con el fin de diagnosticar y hacer seguimiento ambulatorio a los pacientes; permite detectar alteraciones que no son evidenciables en el electrocardiograma convencional. De otro lado, el monitor electrocardiográfico continuo se usa en la Unidad de Cuidados Intensivos para evaluar la dinámica cardiaca de pacientes en estado crítico7. Por medio de estas herramientas es posible observar alteraciones del ritmo cardiaco y la eficacia de los métodos terapéuticos.
El comportamiento de la dinámica cardiaca de un sistema que varía en el tiempo, es susceptible de estudio a partir de la teoría de los sistemas dinámicos; en este sentido, se han diseñado diferentes metodologías para su evaluación9. En diferentes estudios, se ha buscado establecer la variabilidad de la frecuencia cardiaca (VFC) como parámetro diferenciador para realizar diagnósticos, utilizando conceptos provenientes de las matemáticas, como la teoría de los sistemas dinámicos y la geometría fractal10. Goldberger et al. establecieron que las dinámicas cardiacas que presentan un alto grado de regularidad o que son extremamente aleatorias, suelen asociarse a enfermedades, mientras que el estado de normalidad se halla en un punto medio entre estos extremos11. De igual manera, se han encontrado métodos que permiten predecir la mortalidad en pacientes con infarto de miocardio y fracción de eyección al 35%. Sin embargo, la aplicabilidad clínica de estos parámetros continúa en estudio12.
Con base en los sistemas dinámicos y la geometría fractal13), se han desarrollado metodologías de carácter diagnóstico que logran diferenciar de forma objetiva y reproducible enfermedad de normalidad5. Por ejemplo, se desarrolló un método diagnóstico fundamentado en la evaluación de los espacios de ocupación de los atractores caóticos cardiacos en el espacio fractal de box-counting. Este método fue confirmado en estudios de evaluación de su aplicabilidad clínica14, incluso ante una disminución de su tiempo de evaluación a dieciséis horas15.
La teoría de la probabilidad aplicada a la frecuencia cardiaca y el número de latidos/hora, ha permitido un método de evaluación objetivo y reproducible que establece diferenciaciones entre enfermedad y normalidad, cuya efectividad se ha confirmado en diferentes estudios, alcanzando niveles de sensibilidad y especificidad de 100% y un coeficiente kappa de 116.
Recientemente se desarrolló una metodología que unifica la teoría de sistemas dinámicos, la geometría fractal y la teoría de la probabilidad, logrando un diagnóstico de la dinámica cardiaca que evalúa la probabilidad de ocupación espacial de atractores cardiacos en el espacio fractal de box counting. Así se diagnostica efectivamente normalidad de enfermedad, con información de la frecuencia cardiaca y el número de latidos durante dieciséis horas (en evaluación para publicación). Este trabajo tiene como propósito llevar a cabo una confirmación de la aplicabilidad clínica de esta metodología diagnóstica, por medio de un estudio ciego con ochenta estudios Holter y registros electrocardiográficos continuos.
Materiales y métodos
Definiciones
Espacio de fases. Es un espacio geométrico n-dimensional para n >1, en el cual es posible representar la dinámica de los sistemas, por medio de la graficación de pares ordenados consecutivos en el tiempo de una misma variable dinámica. Esta representación se denomina atractor.
Fractal. Es un objeto cuya irregularidad y dimensión puede ser calculada con diferentes métodos. Para fractales de tipo salvaje, el método usual es el método de box-counting.
Dimensión fractal de box-counting. Se mide por medio de la siguiente ecuación:
Donce DF es la dimensión fractal, N es el número de cuadros ocupados por el objeto y j es el grado de partición de la cuadrícula.
Probabilidad de ocupación del atractor POA. Se define como el cociente entre el número de cuadros ocupados por el atractor cardiaco y el número total de cuadros del espacio generalizado de box-counting.
Población
Se seleccionaron para el estudio, ochenta registros electrocardiográficos ambulatorios y continuos durante dieciséis horas, correspondientes a pacientes mayores de veintiún años, entre los cuales diez fueron diagnosticados por un cardiólogo experto como normales y los restantes setenta como enfermos. Estos registros provenían de bases de datos del grupo Insight. El grupo de diez registros Holter normales fue seleccionado como control, porque no presentaba dudas en su diagnóstico clínico, con el fin de comparar estos resultados con los registros Holter anormales y establecer diferencias matemáticas claras entre los distintos estados evaluados.
Procedimiento
Fueron enmascarados los diagnósticos convencionales, establecidos por personal experto. Posteriormente, se tomaron el número de latidos/hora y las frecuencias máximas y mínimas de cada registro Holter y/o electrocardiográfico continuo, para generar una secuencia semialeatoria de frecuencias cardiacas, con el objetivo de construir el atractor en el espacio de fases para cada registro.
Posteriormente, se calcularon los espacios de ocupación de cada atractor y con esta información, a través del método de box-counting, se determinó la dimensión fractal para cada uno de ellos, mediante la superposición de dos rejillas, de 5 y 10 lat/min. A continuación, se calculó la probabilidad de los espacios de ocupación en la rejilla pequeña o Kp y a partir de este valor se determinó el diagnóstico físico matemático para cada una de las dinámicas. De acuerdo con el estudio previo (en evaluación para publicación), la normalidad se asocia con probabilidades de ocupación espacial iguales o superiores a 0,157 en la rejilla Kp, mientras que la enfermedad aguda se relaciona con valores iguales o inferiores a 0,056.
Análisis estadístico
Se desenmascararon los diagnósticos convencionales y se tomaron como patrón de oro. Se tomaron medidas de especificidad y sensibilidad, así como de valor predictivo positivo y negativo para comparar la metodología matemática con el diagnóstico clínico establecido.
Dichas medidas se hicieron a través de una clasificación binaria, en la que se observaron verdaderos positivos, verdaderos negativos, falsos positivos y falsos negativos.
Con el objetivo de evaluar la concordancia entre el diagnóstico físico-matemático y el diagnóstico clínico convencional, se calculó el coeficiente kappa a través de la siguiente fórmula:
Donde:
Co: número de concordancias observadas, es decir, número de pacientes con el mismo diagnóstico de acuerdo con la nueva metodología propuesta y con el estándar de oro.
To: totalidad de observaciones, es decir, la totalidad de casos normales y patológicos.
Ca: concordancias atribuibles al azar, que se calcularon con base en la siguiente fórmula:
Donde f1 es el número de pacientes que presentan valores matemáticos dentro de los límites de normalidad, C1 es el número de pacientes diagnosticados clínicamente dentro de la normalidad, f2 es el número de pacientes que presentan valores matemáticos asociados a enfermedad, C2 es el número de pacientes diagnosticados clínicamente con enfermedad y To es el número total de casos normales y con enfermedad.
Aspectos éticos
Este estudio se enmarca como investigación con riesgo mínimo, de acuerdo con la resolución 8430 de 1993 del Ministerio de Salud de Colombia, pues sólo se realizan cálculos físicos y matemáticos en reportes de exámenes y paraclínicos no invasivos, los cuales ya han sido prescritos. Además, se protegió el anonimato de los pacientes cumpliendo con los principios de la Declaración de Helsinki, proferida por la Asociación Médica Mundial.
Resultados
En la tabla 1 se observan los diagnósticos convencionales de algunas de las dinámicas del estudio. En la tabla 2 se aprecian los valores de los parámetros encontrados en el estudio; para dinámicas normales los valores de la dimensión fractal oscilaron entre 1,647 y 1,957, mientras que los valores de ocupación espacial para las rejillas Kp y Kg estuvieron entre 213 y 426, y 66 y 120, respectivamente. Así mismo, la probabilidad de ocupación en la rejilla Kp arrojó valores entre 0,164 y 0,329.
Para las dinámicas anormales los valores de la dimensión fractal se encontraron entre 1,404 y 1,953 y los valores de ocupación para las rejillas Kp y Kg se hallaron entre 38 y 187, y 13 y 52, respectivamente. Así mismo la probabilidad de ocupación en la rejilla Kp arrojó valores entre 0,029 y 0,144.
Estos valores evidencian que las dimensiones fractales no permiten establecer diferencias entre normalidad y enfermedad, como se había hecho evidente en estudios previos. En contraposición, la probabilidad de ocupación del atractor permite establecer diferencias cuantitativas, confirmando que las dinámicas con enfermedad presentan probabilidades de ocupación menores que las dinámicas normales. De acuerdo con el estudio previo, la normalidad corresponde a probabilidades de ocupación espacial iguales o superiores a 0,157 en la rejilla Kp, mientras que la enfermedad aguda tiene valores iguales o inferiores a 0,056, datos que se confirman con los resultados de esta investigación. Adicionalmente, se observó que dinámicas en estado crónico tiene valores inferiores al límite de normalidad, y que dinámicas en estados agudos, tales como IAM, presentan los valores de probabilidad más pequeños (tabla 2).
De este modo se evidenció que los valores de sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo tuvieron valores de 100%, mientras que el coeficiente kappa tuvo valor de 1.
Los valores anteriores evidencian que las dimensiones fractales no permiten establecer diferencias entre normalidad y enfermedad, como se había hecho evidente en estudios previos. En contraposición, la probabilidad de ocupación del atractor permite establecer diferencias cuantitativas, confirmando que las dinámicas con enfermedad tienen probabilidades de ocupación menores que las dinámicas normales. De acuerdo con el estudio previo, la normalidad corresponde a probabilidades de ocupación espacial iguales o superiores a 0,157 en la rejilla Kp, mientras que la enfermedad aguda presenta valores iguales o inferiores a 0,056, hecho que también se confirma con los resultados de esta investigación. Además, se observó que dinámicas en estado crónico presentan valores inferiores al límite de normalidad y que dinámicas en estados agudos, tales como IAM, tienen los valores de probabilidad más pequeños (tabla 2).
De este modo se evidenció que los valores de sensibilidad, especificidad, valor predictivo positivo, y valor predictivo negativo tuvieron valores de 100% y el coeficiente kappa tuvo valor de 1.
Discusión
Este es el primer estudio en el cual se confirma la utilidad clínica y diagnóstica de la metodología fundamentada en los sistemas dinámicos y la teoría de la probabilidad, desarrollada para la evaluación de las dinámicas cardiacas, alcanzando los máximos valores permitidos de especificidad y sensibilidad. Por su objetividad y reproducibilidad, esta metodología puede aplicarse a cualquier caso, ya sea proveniente de estudios Holter o de registros electrocardiográficos continuos de UCI, independiente del tipo de enfermedad, intervenciones, edad u otro factor de riesgo, en individuos mayores de veintiún años.
Este método es de suma utilidad en la diferenciación entre normalidad y enfermedad aguda, pues además establece un rango de valores característicos de evolución entre ambos estados. La metodología se configura como una forma de evaluación de los registros electrocardiográficos que se basa en conceptos matemáticos de fácil aplicación, siendo útil para evaluar la eficiencia de procesos quirúrgicos o terapia farmacológica e igualmente para realizar un seguimiento más objetivo de pacientes en la UCI.
En un estudio prospectivo desarrollado en pacientes con alto riesgo de muerte cardiaca súbita, se propuso como hipótesis que la evaluación de las variaciones en la morfología de la onda T en respuesta a las variaciones en el intervalo RR, podría utilizarse como un marcador de heterogeneidad espacial de la restitución, y que adicionalmente esta relación se asocia con mayor vulnerabilidad a las arritmias ventriculares17. El estudio encontró un índice que cuantifica el cambio morfológico de la onda T por incremento de RR y, por tanto, representa la restitución de la morfología de la onda T (RMT), es decir, el índice cuantifica las variaciones morfológicas de la onda T y se considera como la mejor estimación de la heterogeneidad de la restitución de la repolarización que los marcadores basados en intervalos. Sin embargo, esta hipótesis necesita estudios futuros para evaluar la relación entre RMT y otros índices de restitución, como el índice de intensidad de restitución regional (R212) recientemente propuesto como marcador de riesgo de muerte subita18.
Por su parte, esta metodología puede sintetizar la cantidad de variables implícitas en los anteriores estudios, los cuales requieren de gran número de procedimientos para seleccionar y medir la onda T. En cuanto a los marcadores de riesgo de muerte súbita definidos en el momento en que está sucediendo el episodio, con la idea de que es este el momento de mayor información, la investigación puede requerir de mayor número de sujetos para definir el índice más apropiado y aplicable para todos los casos. Así mismo, esta metodología muestra la posibilidad de hacer un análisis más profundo a partir de los valores de la frecuencia cardiaca máxima, mínima y total de latido por hora, representados en un atractor cardiaco, cuyos espacios de ocupación del atractor indican en el tiempo, la evolución a un estado de agudización de la dinámica cardiaca sin esperar que acontezca el evento adverso.
Este trabajo, además, presenta un avance importante respecto al trabajo en el que se planteó originalmente el método diagnóstico, pues mientras que en dicha investigación se evaluaron dinámicas en estado normal y agudo, en esta se incluyeron dinámicas en estados crónicos, demostrándose que en todos los casos estas dinámicas tienen probabilidades de ocupación espacial inferiores al estado de normalidad, y que dicho valor de probabilidad disminuye a medida que se se dan dinámicas en estados más agudos. Así, por ejemplo, la dinámica 6 de la tabla 1 presentó bradicardia y disminución moderada de la VFC, que es una afección leve en comparación con la dinámica 14, que presentó IAM y una fracción de eyección del 40%. En el primer caso se encontró una probabilidad de ocupación del atractor de 0,144, mientras que en el segundo la probabilidad fue de solo 0,035, más de diez veces menor.
En Cardiología se había estudiado la variabilidad de la frecuencia cardiaca19, con algunas limitaciones en su aplicabilidad; sin embargo, han surgido métodos cuantitativos que evidencian una autoorganización del sistema, desde la perspectiva físico-matemática como el que se empleó en este trabajo.
Esta perspectiva ha permitido el advenimiento de una ley matemática exponencial para la evaluación de la dinámica cardiaca, cuya aplicabilidad clínica, ha sido confirmada en pacientes con arritmia20. El concepto de ocupación espacial de los atractores, que fundamenta dicha ley, también ha sido útil para evaluar la dinámica cardiaca neonatal y detectar alteraciones previas de sepsis21. Desde la probabilidad, se han observado diferencias entre normalidad y enfermedad y se han identificado alteraciones leves subdiagnosticadas de forma convencional, en pacientes con arritmias y marcapasos20,22. También, se desarrolló una metodología que permite hacer diagnósticos precisos de los sistemas cardiacos a partir de la proporción de la entropía de atractores23. Al ser aplicada en pacientes de la unidad de cuidados coronarios, se mostró que procesos de agudización que no son de fácil seguimiento con métodos usuales, quedan expuestos y adecuadamente diagnosticados a través de este método24. En la misma línea, esta investigación reafirma la relevancia de la aplicación de metodologías basadas en el pensamiento de las ciencias básicas, como la Física y las Matemáticas, pues su carácter objetivo da luces a la distinción acertada de estados de enfermedad, con lo cual se convierten en herramientas de suma utilidad clínica, al dejar de lado factores de riesgo y consideraciones estadísticas o poblacionales por su carácter acausal y el método inductivo subyacente25, procedente de la física teórica moderna.
Esta forma de proceder ha permitido realizar contribuciones de carácter predictivo y diagnóstico en áreas como la Inmunología26, la Infectología27 y la Salud pública (en temas como la malaria) (28; también se han desarrollado caracterizaciones y diagnósticos a nivel celular y arterial29-31) y se ha logrado predecir mortalidad en la UCI32.