SciELO - Scientific Electronic Library Online

 
vol.29 issue2A review on risk assessment of formulation development and technology transfer of COVID-19 vaccines author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Vitae

Print version ISSN 0121-4004

Vitae vol.29 no.2 Medellín Jun./Dec. 2022  Epub Jan 18, 2023

https://doi.org/10.17533/udea.vitae.v29n2a347447 

Foods: science, engineering and technology

Evaluation of lactic acid fermentation in a dairy and non-dairy beverage using two commercial starter cultures*

Evaluación de la fermentación láctica en una bebida láctea y no láctea usando dos cultivos iniciadores comerciales

Ana Ruby Correa1  * 

Martha Cuenca2 

1Professor. Gastronomy technology program. Universitaria Agustiniana. Bogotá D.C. - Colombia.

2Assistant Professor, Chemical Engineering Program. Universidad de Cartagena. Cartagena de Indias D.T. - Colombia.


ABSTRACT

Background:

Lactic fermentations are a catabolic process in which biochemical transformations of different organic products occur. Sugars are mainly converted into organic acids, increasing viscosity, acid taste, aroma, and flavor. Lactic acid bacteria provide probiotic characteristics if they reach counts of 106 CFU*g-1 (Colony Forming Units) in the final product, which can generate wellness for consumers.

Objective:

This research aimed to compare the lactic fermentation process in three substrates using two commercial cultures.

Methods:

Whole milk (control), aqueous extract of oats flakes, and an aqueous extract of a mixture of oats flakes with mashua pulp were used. The whole milk was heated, and the aqueous extracts were prepared. All samples were divided into two parts, keeping the temperature at 42°C, and then inoculated with Yomix y Choozit. Each the fermentation lasted 6 hours at 42°C. Fermentation samples were taken each hour, and pH, titratable acidity. and Brix degrees were determined.

Results:

Total lactic acid bacteria were counted at the end of each fermentation. The final product was evaluated with sensory analysis. As expected, there was an increase in titratable acidity, and a decreased pH and Brix degrees. It was observed that the dairy product showed the most significant changes. Fermentations performed with Yomix presented a higher count of lactic bacteria.

Conclusion:

It is possible to carry out lactic fermentation using substrates that do not contain milk, requiring higher initial soluble solids and a longer incubation time.

Keywords: Beverage; oats flakes; mashua pulp; milk; and probiotics

RESUMEN

Antecedentes:

Las fermentaciones lácticas son un proceso catabólico en el que ocurren transformaciones bioquímicas de diferentes productos orgánicos. En ellas, los azúcares son convertidos principalmente en ácidos orgánicos, generando adicionalmente el aumento de viscosidad, sabor ácido, aromas y sabores en los productos finales. Adicionalmente, aportan características probióticas, ya que son realizadas por bacterias lácticas, que, si alcanzan recuentos de 106 UFC*g-1 (Unidades formadoras de colonias) en el producto final, generan bienestar para los consumidores.

Objetivo:

Esta investigación tuvo como objetivo comparar el proceso de fermentación láctica en tres sustratos utilizando dos cultivos comerciales.

Métodos:

Se utilizó leche entera (control), extracto acuoso de hojuelas de avena y un extracto acuoso de mezcla de hojuelas de avena con pulpa de cubios. Se llevó a cabo el calentamiento de la leche entera, y la preparación de los sustratos de avena y cubios. Dichas muestras se dividieron en dos partes, manteniendo la temperatura a 42°C. Cada una de las muestras fue inoculada con Yomix y Choozit. Cada fermentación duró 6 horas manteniendo una temperatura de 42°C. Durante cada hora se tomaron muestras, a las cuales se evaluó el pH, acidez titulable y grados brix. En los productos finales se realizó el recuento de bacterias lácticas y se realizó una evaluación sensorial.

Resultados:

A lo largo de la fermentación se presentó el aumento de la acidez titulable, y disminución del pH y los grados Brix. Se observó que el producto a base de leche mostró los cambios más significativos. En el caso de los productos obtenidos usando Yomix, presentaron mayor recuento de bacterias lácticas al ser comparados con aquellos en los que se usó el cultivo 1.

Conclusión:

Es posible realizar la fermentación láctica usando sustratos que no contengan leche, los cuales requieren mayores sólidos solubles iníciales y un mayor tiempo de incubación.

Palabras clave: Bebidas; hojuelas de avena; pulpa de cubios; leche; y probióticos

1. INTRODUCTION

Lactic acid bacteria and several genera like Bacillus (1), Sporolactobacillus (2), Aeriscardovia, Alloscardovia, Bifidobacterium, Gardnerella, Metascardovia, Parascardovia and Scardovia (3), can produce lactic acid from fermentable sugars. Lactic acid bacteria have been used mainly to develop and preserve dairy products. This is the case with yogurt and cheese. In yogurt production, lactic acid fermentations provide texture, smell, and taste, and these fermentations are mainly carried out by bacteria that can transform lactose (4-5).

Lactic acid bacteria have been used to ferment different vegetal products, gluten-free and lactose- free. These food products are eating alternatives for people with celiac disease (6) or irritable bowel syndrome. For example, in Colombia, there is traditional fermentation of corn and/or rice doughs to produce bakery products (7). Oats and rice beverages fermentation have also been studied (8-11) as well as corn doughs (12).

There is a trend to add cereals or fruits to yogurt to increase dietary fiber content. Different kinds of prebiotics are used, such as fructans (inulin and fructooligosaccharides), galactans, and lactulose (13-14). The prebiotic effects are mainly related to the production of short-chain fatty acids that can reduce pathogenic microbiota and selectively stimulate the probiotic bacteria population by lowering intestinal pH (14).

Several technological aspects must be considered when incorporating probiotic microorganisms into a vegetable matrix. One of these aspects is the viability of the cells throughout the shelf life. The FDA (Food and Drug Administration) recommends that there must be a minimum count of 106 CFU*g-1 (Colony-Forming Unit) for the probiotic to present health benefits (15-16). Equally, the selection of the strain, the amount of inoculum to perform the fermentation, the physicochemical conditions of the substrate to inoculate the probiotics, the sensory characteristics of the expected product, the acceptability of consumers, the conditions of the processing, and the product storage must be considered (17).

Oat comprises 66.2 7% of carbohydrates, mainly starch, and only 1 % corresponds to sugars and oligosaccharides. In addition, it has 16.89 % protein, 6.90 % lipid, 9.7 % crude fiber, 8.22 % moisture, and 1.72 % ash (18). The Andean tubers and roots: The Andean oca (Oxalis tuberosa), ulluco (Ullucus tuberosus), yacon (Smallanthus sonchifolius), arracacha ( Arracacia xanthorrhiza), mashua (Tropaeolum tuberosum) and turnip (Brassica rapa) have great nutritional benefits. However, nowadays, these tubers are unknown to most people, and they present low consumption related to low sensory acceptance, lack of diversification of gastronomic preparations and these tubers are unknown to most people (19-20).

The mashua is a tuber with high content of protein, carbohydrates, fiber, ascorbic acid (Vitamin C), and calories. It contains a high concentration of glucosinolates that confers antibiotic, insecticidal, nematicide, anticarcinogenic, and diuretic properties (21). People consume this tuber mainly cooked and later stewed with onion, tomato, and sometimes milk, whey, cheese, or curd is also added (19,22). Incorporating mashua in other formulations could be an alternative to increase its consumption and recover its production levels (23). Therefore, this research aimed to evaluate the lactic fermentation in dairy and non- dairy beverages using two commercial starter cultures.

2. MATERIALS AND METHODS

2.1 Substrates preparation

Three different fermentable substrates were prepared: a control substrate with whole cow milk (S1), a substrate from oats flake (Avena sativa) (S2), and a mixture of oats flake and mashua pulp (Tropaeolum tuberosum) (S3). The formulation is shown in Table 1, according to previous sensory acceptance (data non-published).

Table 1 Substrate formulations 

Ingredients g / 100 g
S1 S2 S3
Milk 95.0 0.0 0.0
Sucrose 5.0 2.0 2.0
Oats flakes 0.0 5.0 5.0
Water 0.0 93.0 83.0
Mashua pulp 0.0 0.0 10.00

Whole Ultra High Temperature (UHT) cowmilk was added with 5.0 % sucrose, pasteurized at 80 ºC for 20 minutes, then tempered at 42 ºC and followed by the addition of the inoculum. The S2 formulation was prepared and cooked for 30 min to 92 °C; then, the mixture was ground in a blender for 2 min, filtered, and warmed up to 42 °C. Finally, mashua was cleaned, chopped, and cooked for 40 min to 92 °C, then drained, and the pulp was obtained with a mortar. The S3 mixture was mixed and heated to 42 ºC.

2.2 Inoculum preparation

Two freeze-dried starter cultures of commercial probiotic microorganisms were used. The CHOOZIT® MY 800 starter culture (Danisco) containing Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Lactis, Lactobacillus delbrueckii subsp. Bulgaricus, and YOMIX® 883 LYO 50 starter culture (Danisco) containing Streptococcus thermophilus Lactobacillus delbrueckii subsp. Bulgaricus. 100 g of each substrate at 42 ºC were added with 0.5 g of the starter culture and mixed for 5 min, following the manufacturer’s instructions for use. The initial counts of lactic acid bacteria were not considered. This inoculum was added to the 1,100 g of the rest of the substrate, homogenized, and incubated at 42 ºC for 6 hours. Samples were taken at 0, 1, 2, 3, 4, 5, and 6 hours during the fermentation process.

2.3 Determination of proximal composition of substrates before of fermentation

Determinations: moisture by the gravimetric method 930.15 (24), protein content by the Kjeldahl method 955.04 (24), fat content by method 920.39 (24), ash content by method 942.05 (24), total dietary fiber content by method 992.16 (24) and total carbohydrate content by difference method. The analyzes were carried out in triplicate.

2.4 Monitoring of pH, titratable acidity, and total soluble solids

5.0 g of each fermented product was weighed into a beaker, homogenized in 100 mL of distilled water, and pH was measured (HANNA, Colombia); subsequently, the mixture was titrated with 0.1 N NaOH until pH 8.3. The titratable acidity was expressed as a percentage of lactic acid and determined with equation (1).

Total soluble solids, Brix degrees, were determined with a digital refractometer (HANNA, Colombia). The refractometer was calibrated with distilled water. Titratable acidity, pH, and Brix degrees were conducted after 0, 1, 2, 3, 4, and 6 hours of the fermentation time. The analyzes were carried out in triplicate.

2.5 Lactic acid bacteria count

Lactic acid bacteria counts were carried out following the method 966.23-C (25). Briefly, samples of 10 g of were homogenized in 90 mL of 0.1% peptone water, pH 7.3 at 25 ºC. Dilutions were prepared to 10-7, and 1 mL of each dilution was seeded in triplicate in Plate Count Agar culture medium by the standard method. They were incubated at 30 ºC for 48 hours, and the lactic acid bacteria count was performed. The analyzes were carried out in triplicate.

2.6 Sensory analysis

Identification and selection of sensory descriptors for fermented beverages were carried out according to NTC 3932 (26). Then, a descriptive analysis of the color, smell, taste, and texture of each fermented product was performed after 6 hours of fermentation. 15 g of each sample were served in transparent plastic cups at an approximate temperature of 4 °C. The glasses were labeled with a random three-digit code and were arranged to be presented to the panelists sequentially and in random order. The analysis was carried out by ten trained panelists in food sensory evaluation of the gastronomy program of the Agustiniana University in Bogotá, Colombia.

2.7 Statistical analysis

The results obtained from the tests were analyzed with the Minitab 18 software, using the Analysis of Variance Method (ANOVA) (p≤0.05) and a Tukey test to find the significant differences.

3. RESULTS AND DISCUSSION

3.1 Proximal analysis

Concerning the proximal composition of each substrate, protein content was higher for S1, and no significant differences were recorded between substrates S2 and S3. However, vegetables contribute a significant portion of total dietary fiber to the final product, but fermented dairy foods have better protein levels than non-dairy products (Table 2). Oat is one of the foods that provide the most dietary fiber; it can reach up to 13 g in a 100 g serving (10). Traditional yogurts do not have dietary fiber (27); therefore, enrichment or total substitution of milk with sources of dietary fiber like cereals could be an alternative to improve the functionality of this type of food.

Table 2 Proximal composition of fermented substrates 

Parameter Whole cowmilk (S1) Oats (S2) Oats+Mashua pulp (S3)
Protein (%) 3.36a 1.22 ± 0.12b 1.22 ± 0.22b
Fat (%) 0.5a 1.59 ± 0.10b 1.39 ± 0.06b
Total dietary Fiber (%) 0.0 a 1.72 ± 0.003b 0.06 ± 0.01a
Ashes (%) 0.72 a 0.17 ± 0.02 b 0.19 ± 0.01 b
Moisture (%) 80.76a 87.43 ± 0.05b 88.26 ± 0.02b
Carbohydrates (%) 14.66a 7.87 ± 0.25b 8.88 ± 0.20b

Same letters in the same row means no significant differences p<0.05.

Dietary fiber is an indigestible carbohydrate present in the edible parts of plants or fruits. Oats are one of the cereals highlighted by their great contribution of dietary fiber compared to other cereals such as rice, wheat, barley, or rye (28). In contrast, mashua is a tuber rich in starch (12.85%) and with a low content of dietary fiber (0.76%) (29). Therefore, substrate S3, prepared with a mixture of oats and mashua pulp, presented a lower dietary fiber content (0.06%) than the substrate S2 formulated with oats (1.72%). Fermented oats products present higher viscosity and help improve the intestinal microbiota; meanwhile the addition of mashua pulp enhances the contribution of antioxidant compounds such as betalains in the acid form of betaxanthins and betacyanins, as well as the supply of total dietary fiber (30).

3.2 Monitoring of titratable acidity, pH and total soluble solids

The titratable acidity and pH values (Figures 1 and 2) show that a fermentation process occurred in different substrates using two starter cultures (Choozit and Yomix). Although the microorganisms present in the cultures are generally used for the fermentation of lactose, microorganisms could be adapted and were able to use other carbohydrates present in substrates (mainly starch) to start fermentation (27). This fact could be seen in S2 and S3. Fermentation was faster for S1. There are no significant differences in the process of S2 and S3 in terms of increasing acidity and decreasing pH. In studies carried out by Quicazán et al. (31) and Cuenca et al. (27), lactic acid fermentation of a non-dairy soy beverage was successful with 7 hours of incubation. In comparison, other fermented soy beverages with the addition of inulin have required up to 24 hours to reach adequate acidity levels (pH = 4.0 - 4.5) (4, 32).

It was reported that during the lactic fermentation of vegetable matrices (fruits and vegetables) (33), there is a drop in pH, an increase in titratable acidity, lactic acid bacteria growth, and a low decrease in total soluble solids.

Figure 1 Total titratable acidity is expressed as the percentage of lactic acid during fermentation time. S1 (whole cow milk), S2 (oats flakes), and S3 (mixture of oats flakes and mashua pulp). 

Figure 2 pH during fermentation time. S1 (whole cow milk), S2 (oats flakes) and S3 (mixture of oats flakes and mashua pulp). 

S1 could reach minimum pH between 4.0 and 4.5 (Figure 2). Contrary to that was found for S2 and S3. Although a decrease in pH was registered, it did not reach the minimum expected value, indicating that a longer fermentation time was required for non-dairy substrates of oats flakes and mashua pulp (4,32).

Fermentation behavior could be affected by the type of initial fermentable sugars and the amount of protein present in the substrates (Figure 3) and not by the initial total soluble solids. S1 registered initial values of 14 ºBrix and 3.36 % protein, while S2 and S3 started with 8.0 ºBrix and 1.22 % protein. Lactic acid bacteria are nutritionally demanding microorganisms that require certain concentrations of specific amino acids. Therefore, they depend on the production of peptidase proteinases and amino acid and peptide transport systems (34). Studies carried out by (31), in fermented soy beverages did not find significant differences in the appearance of lactic acid when the initial total soluble solids are more than 6.5 ºBrix.

Figure 3 ºBrix during fermentation time. S1 (whole cow milk), S2 (oats flakes) and S3 (mixture of oats flakes and mashua pulp). 

3.3 Lactic acid bacteria count

In all substrates, there was survival of the probiotic microorganisms. However, the substrates inoculated with Yomix starter culture presented the highest lactic acid bacteria content (Table 3). Choozit® starter culture did not show good results for fermentation of lactose-free substrates such as S2 and S3 because the counts did not reach the 106 CFU*g-1 necessary for the fermented food to be considered probiotic (35). Apparently, microorganisms Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Lactis, Lactobacillus delbrueckii subsp. Bulgaricus included in the Choozit culture showed greater adaptation in the presence of milk lactose than oat starch and mashua of substrates S2 and S3. Lactobacillus delbrueckii subsp. bulgaricus presents of the Yomix culture does not exclusively ferment lactose, it would be suitable for vegetable substrates; contrary, L. delbrueckii subsp. lactis with the enzyme β-galactosidase only reacts in the presence of lactose (36). However, the available starches in the substrates could influence the survival of the microorganisms. Oat flakes have higher starch content (4.32 %) (37) than mashua (1.9 %) (29), the initial physicochemical conditions of the substrate, the initial concentration of microorganisms. and the type of fermentable sugars influence the adaptation phase of lactic acid bacteria during the fermentation of non-dairy substrates (33).

Table 3 Count of viable lactic acid bacteria in fermented products after 6 hours incubation at 42ºC (CFU*g-1

S1+ CHOOZIT S1 + Yomix S2 + CHOOZIT S2 + Yomix S3 + CHOOZIT S3 + Yomix
1.99±0.64 x107a 1.32±0.16 x109b 5.13±0.31x102c 1.09±0.03 x 109b 1.82±0.57x102c 1.82±0.57x109c

S1 (whole cowmilk), S2 (oats flakes) and S3 (mixture of oats flakes and mashua pulp). Same letters in the same row means no significant differences p<0.05

3.4 Sensory analysis

Sensory characteristics of S1 were close to those described for yogurts; a higher acidity was perceived both in the smell and in the taste with Yomix starter culture (Table 4). It was not possible to show differences in the texture characteristics for the same substrates, but oats flakes have brought a slimy perception. Acidity during fermentation caused a color change from purple to lilac in the substrates containing mashua pulp. In a study carried out by (38) on yogurt with the addition of quinoa flour, the panelists described the product as a bright natural color, with a separation phase and acid aromas characteristic of high-intensity fermented foods with a creamy consistency. Meanwhile, Quicazán et al. (39) concluded that adding oatmeal to non-dairy yogurts diminishes raw vegetable flavors and improves sensory acceptability. During the fermentation process of sugars in vegetable substrates, some acidic lactic aromas develop, and the carbohydrates provided by oats have a high capacity to form gels, which increases the product viscosity allowing to obtain sensory characteristics similar to traditional yogurts (39).

Table 4 Sensory description of fermented products 

Experiments Parameter Sensory description
S1 + Choozit Taste Slightly sour, characteristic of yogurt
Smell Acid milk, plain yogurt, slightly sour
Color White with creamy notes characteristic of milk
Texture Viscous, thick, dense, smooth on the palate
S1 + Yomix Taste Sour, characteristic of yogurt
Smell Sour milk, non-fruity yogurt, sour
Color White with creamy notes characteristic of milk
Texture Slimy, thick, creamy
S3 + Choozit Taste Cooked oatmeal, slightly sour and tasteless
Smell Cooked oatmeal, slightly sour
Color Cream white color
Texture Viscous, gelatinous, presence of small lumps
S3 + Yomix Taste Cooked oatmeal, slightly sour and tasteless
Smell Cooked oatmeal, slightly sour
Color Cream white color
Texture Viscous, gelatinous, presence of small lumps
S2 + Choozit Taste Slightly sour, taste of cooked mashua, tasteless
Smell Characteristic of cooked mashua
Color Intense lilac, purple
Texture Viscous, gelatinous, presence of fibers
S2 + Yomix Taste Sour, cooked mashua flavor, tasteless, astringent
Smell Characteristic of cooked mashua and slightly sour
Color Intense lilac, purple
Texture Viscous, gelatinous, presence of fibers

CONCLUSIONS

Lactose-free fermented yogurt-like products can be made from oats flakes or a mixture of oats flakes and mashua pulp. However, a fermentation process of more than 6 hours required higher initial soluble solids. The bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus contained in the Yomix starter culture showed the greatest adaptation to the lactose-free substrates compared to the interaction of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Lactis, Lactobacillus delbrueckii subsp. Bulgaricus, of the Choozit starter culture. Bacterium Lactobacillus delbrueckii subsp. Lactis is highly dependent on lactose content to survive.

The substrate made only with oats presented the best physicochemical characteristics of fermentation and sensory characteristics of flavor and texture. The substrate with mashua showed an astringent taste and the presence of fibers, although the increase in acidity during fermentation improved the intensity and brightness of the lilac color.

ACKNOWLEDGMENTS

This research was carried out with the support of the Vice Chancellor for Research of the Agustiniana University.

REFERENCES

1. Zhou X, Ye L, Wu JC. Efficient production of L‐lactic acid by newly isolated thermophilic Bacillus coagulans WCP10‐4 with high glucose tolerance. Appl Microbiol Biotechnol 97. 2013. 4309-4314. DOI: https://doi.org/10.1007/s00253-013-4710-7Links ]

2. Fritze D, Claus D. Spore-forming, lactic acid producing bacteria of the genera Bacillus and Sporolactobacillus. In: Wood B.J.B., Holzapfel W.H. (eds) The Genera of Lactic Acid Bacteria. The Lactic Acid Bacteria 2. Springer, Boston, MA. 1995. DOI: https://doi.org/10.1007/978-1-4615-5817-0_11Links ]

3. Mattarelli P, Holzapfel W, Franz C, Endo A, Felis GE, Hammes W, Pot B, Dicks L, Dellaglio F. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol. 64(4). 2014. 1434-1451. DOI: https://doi.org/10.1099/ijs.0.060046-0. [ Links ]

4. Parra R. Uso de rubas (ullucus tuberosus) en la elaboración y caracterización de yogur. Temas agrarios 20 (1). 2015. 91 - 102. DOI: https://doi.org/10.21897/rta.v20i1.751Links ]

5. Sumarmono J, Sulistyowati M. Fatty acids profiles of fresh milk, yogurt and concentrated yogurt from peranakan etawah goat milk. Procedia Food Sci. 3. 2015. 216-222. DOI: https://doi.org/10.1016/j.profoo.2015.01.024Links ]

6. Niewinski M. Advances in celiac disease and gluten-free diet. J. Am. Diet. Assoc. USA. 108(4). 2008. 661-72. DOI: https://doi.org/10.1016/j.jada.2008.01.011. [ Links ]

7. Betancourt S, Ayala A, Ramírez C. Efecto del proceso de fermentación con bacterias ácido lácticas sobre propiedades reológica de masas de maíz QPM. Revista U.D.C.A Actualidad y divulgación científica. 17(2). 2014. 503-511. DOI: https://doi.org/10.31910/rudca.v17.n2.2014.255Links ]

8. Kedia G, Vázquez J, Pandiella S. Enzymatic digestion and in vitro fermentation of oat fractions by human lactobacillus strains. Enzyme and Microbial Technology 43. 2008. 355-361. DOI: https://doi.org/10.1016/j.enzmictec.2008.03.015Links ]

9. Gallo M, Passannanti F, Colucci R, Nigro F, Schiattarella P, Zappulla S, Budelli A, Nigro R. Lactic fermentation of cereals aqueous mixture of oat and rice flours with and without glucose addition. Heliyon 6. 2020. 1 - 6. DOI: https://doi.org/10.1016/j.heliyon.2020.e04920Links ]

10. Demir H, Simsek M, Yildirim G. Effect of oat milk pasteurization type on the characteristics of yogurt. Food Science and Technology 135. 2021. 1 - 8. DOI: https://doi.org/10.1016/j.lwt.2020.110271Links ]

11. Ríos C, Maldonado L, Caballero L. Bebida fermentada a base de arroz con adición de probióticos. @Limentech Ciencia y Tecnología Alimentaria 14(1). 2016. 58-73. DOI: https://doi.org/10.24054/16927125.v1.n1.2016.2126Links ]

12. Betancourt S, Bolívar G, Ramírez C. Fermentación de maíz de alta calidad proteica con Lactobacillus plantarum (CPQBA 087-11 DRM) aislado en Colombia de masas tradicionales fermentadas. Rev Argent Microbiol. 45(4). (2013). 282-283. DOI: https://doi.org/10.1016/S0325-7541(13)70038-5Links ]

13. Karimi R, Azizib M, GhasemLouc M, Vaziri M. Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers 119: 2015. 85- 100. DOI: https://doi.org/10.1016/j.carbpol.2014.11.029Links ]

14. Mariño A, Núñez M, Velázquez Barreto J. Microbiota, probióticos, prebióticos y simbióticos: Revisión. Acta médica. 2016. 1-21. Disponible en línea: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=68527Links ]

15. Roy D. Technological aspects related to the use of bifidobacteria in dairy products. Le Lait, INRA Editions 85 (1-2). 2005). 39-56. https://hal.archives-ouvertes.fr/hal-00895593Links ]

16. Obando M, Brito C, Schobitz R, Baez L, Horzella M. Viabilidad de los microorganismos probióticos Lactobacillus casei 01, Lactobacillus acidophilus LA-5, bifidobacterium BB12 durante el almacenamiento de queso Cottage. Vitae 17 (2). 2010. https://revistas.udea.edu.co/index.php/vitae/article/view/6275/5830Links ]

17. Castillo V, Fernández S, Cueto S, Ramos G. Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP. Revista especializada en ciencias químico-biológicas 22. 2019. DOI: https://doi.org/10.22201/fesz.23958723e.2019.0.173Links ]

18. US Department of Agriculture. Composition of Foods: Cereal Grains and Pasta: raw, processed, prepared-. USDA Human Nutrition Information Service. 1989. 8-20. [ Links ]

19. Sáenz-Torres S, López-Molinello A, Prieto-Contreras L, Rodríguez T. El cubio como una alternativa productiva sostenible en condiciones de agricultura urbana de Bogotá. Equidad y Desarrollo (34). 2019. DOI: https://doi.org/10.19052/eq.vol1.iss34.6Links ]

20. Malice M, Bizoux J, Blas R, Baudoin J. Genetic diversity of Andean tuber crop species in the in situ microcenter of Huanuco, Perú. Crop Science. 50(5).2010. 1915 - 1923. DOI: https://doi.org/10.2135/cropsci2009.09.0476. [ Links ]

21. Morillo A, Morillo Y, Tovar Y. Caracterización molecular de cubios (Tropaeolum tuberosum Ruíz y Pavón) en el departamento de Boyacá. Rev. Cienc. Agr. 33(2). 2016. 32-42. DOI: https://doi.org/10.22267/rcia.163302.50Links ]

22. Clavijo N. (Ed) Tubérculos andinos: conservación y uso desde una perspectiva agroecológica. Bogotá: Pontificia Universidad Javeriana. 2014. [ Links ]

23. Guerra A. Estudio de la utilización de la harina de mashua (Tropaolum tuberosum) en la obtención del pan de molde. Universidad Tecnológica Equinoccial. Quito, Ecuador. 2014. [ Links ]

24. AOAC. Oficial methods of analysis. William Horwitz. Association of Officiating Analytical Chemists. Washington D.C., Method 920.39, 930.15, 942.05, 955.04 and 962.09. 1990. [ Links ]

25. AOAC. Official method of Analysis. 21st Edition, Association of Officiating Analytical Chemists, Washington DC., Method 966.23-C. 2019. [ Links ]

26. Icontec. NTC 3932. Análisis sensorial, identificación y selección de descriptores para establecer un perfil sensorial por una aproximación multidimensial. Norma Tecnica Colombiana. 1996. 35 p. [ Links ]

27. Cuenca M, Quicazán M. Comparación de la fermentación de bebida de soya y leche de vaca utilizando un cultivo láctico comercial. Ingeniería y Competitividad 5(2). 2004. 16 -22. DOI: https://doi.org/10.25100/iyc.v5i2.2292Links ]

28. Gómez A, Ceballos I, Ruiz E, Rodríguez P, Valero T, Ávila JM, Valera G. Informe: Datos actuales sobre las propiedades nutricionales de la avena. Fundación Española de la Nutrición, FEN. Madrid. 2017. [ Links ]

29. Romero de la Hoz DM, Tuiran LS. Caracterización fisicoquímica, funcional, reológica y composicional de la harina precocida de cubio (Tropaeolum tuberosum R&P) cultivado en diferentes fuentes de fertilización. 2017. Disponible en línea: https://ciencia.lasalle.edu.co/ing_alimentos/74Links ]

30. Mejía F, Salcedo J, Vargas S, Serna J, Torres L. Capacidad antioxidante y antimicrobiana de tubérculos andinos (Tropaeolum tuberosum y Ullucus tuberosus). Revista U.D.C.A. 2018. DOI: https://doi.org/10.31910/rudca.v21.n2.2018.1083. [ Links ]

31. Quicazán M, Sandoval A, Padilla G. Evaluación de la fermentación de bebida de soya con un cultivo láctico. Revista Colombiana de Biotecnología 3(2). 2001. 92 - 99. [ Links ]

32. Fuquene JP, Arenas N. Desarrollo de una bebida fermentada y saborizada a base de soya con adición de inulina y de cultivos probióticos. Trabajo de grado. Facultad de Ingeniería. Universidad de la Salle. Bogotá D.C., 2018. https://ciencia.lasalle.edu.co/ing_alimentos/179Links ]

33. Benavides MA. Aplicación de la fermentación láctica como estrategia de transformación y valorización de matrices vegetales. Tesis doctoral. Facultad de Ingeniería. Universidad Nacional de Colombia. Bogotá. 2019. 275 p. [ Links ]

34. Parra RA. Review. Bacterias acidolácticas: Papel funcional en los alimentos. Revista facultad de ciencias agropecuarias 8(1). 2010. [ Links ]

35. Di Criscio T, Fratianni A, Mignogna R, Cinquanta L, Coppola R, Sorrentino E, Panfili G. Production of functional probiotic, prebiotic, and symbiotic ice creams. Journal of Dairy Science 93 (10). 2010. 4555-4564. DOI: https://doi.org/10.3168/jds.2010-3355Links ]

36. Germond J, Lapierre L, Delley M, Mollet B, Felis G, Dellaglio F. Evolución de las especies bacterianas Lactobacillus delbrueckii: Un estudio genómico parcial con reflexiones sobre el concepto de especies procariotas, Biología molecular y evolución 20(1). 2003. 93-104. DOI: https://doi.org/10.1093/molbev/msg012Links ]

37. Zamudio PB, Tirado JM, Monter JG, Aparicio A, Torruco JG, Salgado R, Bello LA. Digestibilidad in vitro y propiedades térmicas, morfológicas y funcionales de harinas y almidones de avenas de diferentes variedades. Revista Mexicana de Ingeniería Química 14 (1). 2015. 81-97. Disponible en línea: http://www.scielo.org.mx/pdf/rmiq/v14n1/v14n1a8.pdfLinks ]

38. Ramírez AE. Desarrollo de perfil sensorial de yogurt natural adicionado harina de quinua. Trabajo de grado. Facultad de ciencias de la ingeniería e industrias. Universidad Tecnológica Equinoccial. Quito. Ecuador. 2016. 75 p. [ Links ]

39. Quicazán M, Sandoval A, Padilla G. Evaluación de la fermentación de bebida de soya con un cultico láctico. 2010. Recuperado de http://www.bdigital.unal.edu.co/31014/1/30080-108282-1-PB.pdfLinks ]

*How to cite: Correa A. R., Cuenca, M. (2022). Evaluation of lactic acid fermentation in a dairy and non-dairy beverage using two commercial starter cultures. Vitae, 29(2). https://doi.org/10.17533/udea.vitae.v29n2a347447

CONFLICTS OF INTEREST The authors state that they have no conflict of interest.

Received: September 07, 2021; Accepted: April 12, 2022

* Corresponding: Ana Ruby Correa. ana.corream@uniagustiniana.edu.co

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License