INTRODUCCIÓN
El contenido de agua del suelo (CAS) es una propiedad edáfica relacionada con múltiples procesos biofísicos asociados al crecimiento y al desarrollo de las plantas desde su germinación, adsorción de agua y nutrientes, procesos de transpiración y de evaporación, entre otros, por lo tanto, la determinación de la humedad en el suelo es uno de los principales componentes para tener en cuenta a la hora de implementar diferentes actividades de manejo integrado para la producción de cultivos, como por ejemplo, en el momento de realizar lo cálculos para: i) determinar la cantidad y el costo de las láminas de riego; ii) la frecuencia de riego y iii) los requerimientos nutricionales para los sistemas de fertirriego (Anbazhagan et al. 2020).
Los métodos convencionales para la medición del CAS son costosos, debido al uso de insumos químicos y, en algunos casos, altamente contaminantes (Martínez Sepúlveda et al. 2021). También tiene como desventaja la necesidad de la destrucción de las muestras para la extracción del elemento a ser analizado, requieren de la perturbación del suelo, ya sea para la extracción de muestras a diferentes profundidades o para la instalación de sensores y a la vez estos métodos demandan mucho tiempo para su ejecución (Curto et al. 2016; Peng et al. 2020). Esto hace que la precisión de los datos disminuya, en especial, teniendo en cuenta que el suelo es un medio cambiante, tanto en el espacio como en el tiempo, debido a los factores de formación (Castillo-Valdez et al. 2021) y que requiere de una adecuada interpretación de sus características, para lograr un manejo eficiente del mismo (Peña Vanegas, 2020).
En lo que respecta a la ingeniería de irrigación, la medición del CAS cumple un papel fundamental para el seguimiento en el terreno de los sistemas de riego de los cultivos. La aplicación excesiva o deficiente de agua puede ocasionar alteraciones en el metabolismo de las plantas, siendo más crítico cuando se llega a niveles de estrés hídrico (Anbazhagan et al. 2020). Por esto, es necesario contar con una técnica rápida, precisa y de bajo costo, que permita monitorear, de manera eficiente, el suelo y que se pueda considerar como una herramienta para la toma de decisiones, a la hora de implementar estrategias de uso y manejo edáfico.
La espectroscopía en el infrarrojo cercano (NIRS por sus siglas en idioma inglés), dado que no genera residuos; se puede considerar como una tecnología limpia, a la vanguardia del contexto actual de cambio climático y sostenibilidad, pues se adquiere una señal (huella espectral), que es única para cada muestra de suelo. Ante esto, diferentes autores, como Skoog et al. (2007), Stenberg et al. (2010) y Peng et al. (2020), afirman que la NIRS es una tecnología promisoria para el mapeo digital de suelos de alta resolución y la agricultura de precisión, que incluye la determinación del CAS, ya que a partir del espectro de una sola muestra es posible evaluar múltiples propiedades del suelo y así analizar un mayor número de muestras, en un corto período de tiempo y a menor costo por muestra (Marakkala Manage et al. 2018). Esta técnica se fundamenta en el análisis e interpretación de sobretonos y combinación de vibraciones generadas como respuesta a un estímulo de luz, en el cual, se identifican diferentes bandas de adsorción producidas, principalmente, por los grupos funcionales -CH, -NH y -OH (Afara et al. 2021).
Existen diferentes trabajos que muestran la relación entre el contenido de humedad del suelo y la respuesta espectral de la muestra de suelo; por ejemplo, Darra et al. (2021) evidenciaron una relación inversamente proporcional entre el CAS y la respuesta espectral del suelo en el intervalo de VIS-NIR, atribuido, principalmente, a las respuestas espectrales de los minerales primarios y secundarios a diferentes concentraciones de humedad. Este fenómeno ha sido explicado por Zhan et al. (2007), quienes concluyeron que el CAS muestra un comportamiento inversamente proporcional a la respuesta espectral de las muestras de suelo en el rango visible e infrarrojo cercano, disminuyendo cuando el CAS aumenta. Otras alteraciones ligadas al CAS han sido expuestas por Nocita et al. (2015), quienes han identificado que, bajo condiciones de campo, la variación en el CAS puede enmascarar de manera variable la respuesta espectral de otros componentes del suelo, como es el caso de la materia orgánica, ocasionando una disminución en la precisión de predicción de los modelos de estimación del contenido de materia orgánica y del carbono orgánico del suelo, debido a que la curva espectral que se obtiene del suelo presenta comportamiento similar en suelos con alto contenido de materia orgánica o con altos contenidos de agua.
Específicamente en Colombia, se han desarrollado diferentes investigaciones empleando la espectroscopía como técnica de análisis de suelos; sin embargo, ninguno ha reportado la evaluación de la incidencia del CAS en suelos colombianos. A partir de lo expuesto anteriormente, la finalidad de esta investigación fue validar un modelo de estimación del contenido de agua del suelo, mediante espectroscopía de reflectancia difusa NIR.
MATERIALES Y MÉTODOS
Zona de Estudio. Este trabajo se desarrolló empleando tres suelos diferentes, provenientes de los departamentos del Meta, Tolima y Cundinamarca, en Colombia, de los cuales, se extrajeron las muestras a la mitad de los dos primeros horizontes, para cada tipo de suelo. Los dos primeros, fueron extraídos previamente de dos centros de investigación de la Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA: a) Centro de Investigación Carimagua, ubicado en el municipio de Puerto Gaitán (Meta) 4°34'01,6" N 71°19'58.0" O, a 170 m s.n.m. y b) Centro Agropecuario “La Granja”, ubicado en la región del Espinal (Tolima) 4°10'17,6" N 74°55'44.4" O, a 312 m s.n.m. El tercero fue tomado del Centro Agropecuario Marengo, finca experimental de la Universidad Nacional de Colombia, en el municipio de Mosquera (Cundinamarca), 4°42'52,0" N 74°12'60,0" O, a 2.516 m s.n.m.
Para la toma de muestras en el Centro de Investigación Carimagua (C.I.C) y en el Centro Agropecuario “La Granja” (C.A.G.), cuya extensión es de 5.100 ha y 50 ha, respectivamente, se estableció un sistema de red rígida, teniendo en cuenta la información disponible de la zona de estudio del Instituto Geográfico Agustín Codazzi (IGAC) y AGROSAVIA, a partir de la cual, se seleccionaron 40 puntos, para el C.I.C. y 74 puntos, para el C.A.G., tomando las muestras a 10 y 30 cm y 10 y 25 cm de profundidad, respectivamente.
En cuanto al Centro Agropecuario Marengo (C.A.M.), que cuenta con un área de 94,6 ha, se realizaron 77 cajuelas georreferenciadas, por medio de un Sistema de Posicionamiento Global, en 16 de los 17 lotes, extensión equivalente a 72,8 ha, en total. En cada cajuela, las muestras fueron recolectadas a 10 y a 35 cm de profundidad.
Determinación de contenido de agua. Todas las muestras fueron secadas al aire durante 72 horas hasta alcanzar la humedad de equilibrio. Posteriormente, se procedió a su molienda y tamizaje, empleando una malla de 2 mm, para remover el material detrítico y homogenizar cada muestra (Zhan et al. 2007). En cada caso, se analizaron tres tratamientos consistentes CAS de 0, 15, 30 %, realizando un pre-secado a 60 °C, durante 48 horas, con el fin de homogenizar las muestras, a un contenido de agua cercano a 0 % (Nocita et al. 2015).
La determinación del peso de agua (caapl) a agregar por gramo de suelo, se realizó por medio de la ecuación 1. Después de aplicar caapl correspondiente, las muestras se dejaron en reposo en recipientes herméticos por 24 horas, permitiendo la distribución uniforme del agua; luego, se obtuvieron las curvas espectrales, por medio del espectrómetro FT-NIR modular NIRFlex N-500.
Donde, caapl es el peso total de agua a agregar a cada muestra (g); m T , el peso total de cada muestra (g); ω d, el contenido de agua (%) al que se desea llegar en cada caso; ω i el contenido de agua (%) inicial de cada muestra determinado previamente por el método de la estufa.
Después de la toma de espectros, se seleccionaron submuestras para cada sitio de muestreo, secadas a 105 °C, durante 24 horas; se calculó la humedad gravimétrica de cada una y se realizaron las pruebas convencionales (Alviz et al. 2014). El CAS fue determinado empleando la norma colombiana INV E-122-07 (INVIAS, 2012). Los resultados fueron analizados mediante estadística descriptiva y aplicando la prueba de Grubbs (p<0,05).
Procesamiento y análisis de las curvas espectrales. La figura 1 muestra, de manera detallada, el diagrama de flujo del proceso realizado en la presente investigación, en el cual, el conjunto de calibración se conformó por el 75 % de las muestras que pasaron la prueba de Grubbs y el 25 % restante, se emplearon como el conjunto de validación. Todas las curvas espectrales fueron preprocesadas para reducir y corregir los efectos de dispersión y ruido, empleando la derivada de Savitzky - Golay (Wang et al. 2022), la SNV (Standard Normal Variation) y la Normalización (Wang et al. 2020).
La calibración de cada uno de los modelos se llevó a cabo, mediante la regresión de mínimos cuadrados parciales (PLSR), teniendo en cuenta la ecuación descrita por Zossi & Sorol (2010). Para la linealización de los parámetros se utilizó el algoritmo iterativo no lineal de mínimos cuadrados parciales (NIPALS-Nonlinear Iterative Partial Least Squares). Luego, se realizó la validación de los tres modelos, a través de una validación cruzada y una validación externa. Por último, se generó un modelo, cuya base de entrada fue los datos de los suelos de los tres orígenes.
Posteriormente, se seleccionó el modelo con mejor ajuste, teniendo en cuenta: el error medio (ME), el coeficiente de determinación (R2), la desviación estándar del error (SDE), la raíz del error medio cuadrático de la predicción (RMSE), el coeficiente de variación CV, bias y la desviación residual de la predicción RPD. De igual manera, los resultados de la validación de los modelos fueron empleados como criterio para determinar el número de factores PLSR, los cuales, se escogieron usando los resultados de la validación de los modelos, donde se consideró el coeficiente de determinación, para el conjunto de validación (R2) y el error estándar, para el conjunto de validación (SEP).
RESULTADOS Y DISCUSIÓN
Palmer & Williams (1974) exponen que la cuantificación del CAS empleando espectroscopía NIR, está basada en los sobretonos existentes de las bandas de absorción de agua a 1.450, 1.950 y 2.950 nm; sin embargo, el rango espectral del espectrofotómetro FT-NIR modular NIRFlex N-500 es de 800 - 2.500 nm, con medidas simultáneas para todos los anchos de las ondas, lo que solo permitió analizar las muestras en 1.450 y 1.950 nm.
A continuación, se muestra los espectros correspondientes a los tres tipos de suelos evaluados (Figura 2), en los cuales, el valor de reflectancia disminuye respecto al aumento del CAS, representado por los picos de grupos hidroxilo en cada suelo, comportamiento identificado por Neema et al. (1987), quienes identificaron que, cuando la película de agua cubre cada partícula del suelo, la relación entre la reflectancia y la humedad del suelo vuelve al límite higroscópico, es decir que, en ese punto, existe una directa relación entre el contenido de humedad del suelo y la capacidad de retención a capacidad de campo (Zhu, 1984).
También, se identifica una tendencia de suavizado de los picos característicos de estas curvas espectrales, comportamiento que concuerda con lo expuesto por Ogen et al. (2019), quienes afirman que el CAS distorsiona la forma espectral general y enmascara las principales absorciones espectrales del suelo. El contenido de humedad del suelo afecta el espectro al amplificar la absorción de agua a 1.400, 1.900 nm y en 2.300 - 2.500 nm y al disminuir el albedo general, a través de él (Twomey et al. 1986; Lobell & Asner, 2002; Ge et al. 2014).
Por otra parte, los resultados (Tabla 1) permiten identificar que el rango de reflectancia de los espectros con el mismo CAS es mayor, a medida que el contenido de agua aumenta (Weidong et al. 2002). Esta tendencia, se origina por la afectación del albedo derivada de la humedad de las muestras, como lo mencionan autores, como Nocita et al. (2013). En suelos con mayor porcentaje de humedad se identifica un albedo cercano a 1,50, correspondiente al índice de refracción del suelo y otro de aproximadamente 1,33, asociado al índice de refracción del agua, valores inferiores a los esperados para suelos con un bajo CAS, en los que las partículas están rodeadas de aire y su albedo es cercano a 1,00 (Bach & Mauser, 1994). Dicha disminución en el índice de refracción en las superficies suelo-agua-aire genera una menor dispersión de la luz incidente.
En los tres tipos de suelos se evidencia una disminución de la reflectancia ligada al aumento del CAS; sin embargo, esta no es lineal e independiente de los tipos de suelo (Zhang et al. 2021). La variación es más pronunciada a 1.940 nm en los tres suelos y para las tres concentraciones de humedad; no obstante, a los 2.300 nm, este comportamiento se revierte (Weidong et al. 2002). Adicionalmente, una mayor proporción de la luz se propaga de manera más profunda en el suelo, gracias al reflejo adicional de la energía dispersa en la interfaz agua-aire, ligada a la película de agua que rodea las partículas del suelo (Somers et al. 2010).
Calibración de modelos. La tabla 2 contiene los parámetros estadísticos que permitieron seleccionar el modelo de predicción y los valores de los coeficientes β obtenidos a partir de la ecuación 1, para cada uno de los suelos evaluados.
Específicamente, en el caso de los suelos provenientes del C.A.M y del C.I.C., los coeficientes de regresión de Pearson, para los modelos de calibración, validación cruzada y externa obtenidos, fueron de 0,97, 0,96 y 0,95, respectivamente, indicando una alta correlación, resultados consecuentes con los resultados reportados por autores, como Mouazen et al. (2006), quienes reportaron un R2 de 0,98, Slaughter et al. (2001), con un R2 de 0,89 y Somers et al. (2010), con un R2 de 0,82. Por otra parte, los suelos originarios del C.A.G. mostraron coeficientes de regresión de Pearson más bajos que los reportados por la literatura, pero se consideran aceptables.
Respecto a los RMSE observados, el modelo del C.A.M. fue el más bajo con 0,02, valor inferior al reportado por Whiting et al. (2004), quienes obtuvieron un RMSE de calibración de 0,031, mientras que el modelo del C.I.C., cuenta con un RMSE de calibración similar al reportado por estos autores y el modelo del C.A.G., muestra los valores más altos (entre 0,04 y 0,05), para los suelos estudiados, superando los reportados en la literatura.
Considerando los criterios de predicción de RPD propuestos por Chang et al. (2001), para propiedades edáficas identificadas con espectroscopía NIR, valores mayores a 2,0, permiten considerar la predicción del modelo como buena, si los valores se encuentran entre 1,4-2,0, su predicción es razonable y valores inferiores a 1,4, indican una predicción no confiable. Por lo tanto, los tres modelos cuentan con una predicción robusta al presentar valores mayores a 2,0, tanto para la calibración como para la validación externa (Tabla 2). Estos resultados se reafirman con los valores a 0,8 del coeficiente de determinación y valores del RMSE cercanos a cero.
R2: R cuadrado; RMSE: error de raíz cuadrada media; SE: error estándar; SD: desviación estándar; RPD: desviación residual de predicción.
Análisis de componentes principales. Para identificar las muestras con el mismo CAS, se realizó un análisis de componentes principales (ACP) a los cuatro tipos de modelos generados para cada suelo. En el caso de los suelos del C.A.M., los CAS son diferenciables (Figura 3a) y después del ACP, se evidenció que los dos primeros componentes explican un 89 % de la varianza total del modelo. Específicamente, el componente principal 1, discrimina en un 68 % el total de las muestras para los tres contenidos de agua y el componente principal 2, tan solo diferencia las muestras en un 21 %.
Por otra parte, los suelos del C.A.G. (Figura 3b) muestran gran diferencia entre las muestras con un 0 % de CAS y los otros dos porcentajes, los cuales, se diferencian entre sí, en menor medida. Para estos suelos, los dos primeros componentes explican el 90 % de la variación total de estas muestras.
En este caso, el modelo con mejor diferenciación de los tres contenidos de agua es el de los suelos del C.I.C. (Figura 3c), en el cual, la variación de las muestras de suelos es explicada en un 96 %, por los dos principales componentes.
Por último, el modelo generado a partir de los datos de estos tres tipos de suelos presenta altos coeficientes de regresión y errores relativamente bajos, similares a los alcanzados por otros autores (Tabla 3). El RPD obtenido es mayor a 2,0, lo que indica que tiene una alta capacidad predictiva.
R2: R cuadrado; RMSE: error de raíz cuadrada media; SE: error estándar; SD: desviación estándar; RPD: desviación residual de predicción.
La varianza del conjunto de datos que generó el modelo conjunto (Figura 3d) puede ser explicada en un 58 %, por el componente principal 1 y en un 29 %, por el componente principal 2.
Gracias a los resultados obtenidos se puede afirmar que todos los modelos generados para predecir el contenido de agua de los duelos del C.A.M, C.I.C. y C.A.G. poseen una alta capacidad predictiva, a partir del conjunto de datos los tres tipos de suelos.
Los modelos de predicción generados muestran que, sin importar la clase del suelo, es posible generar y validar un modelo robusto para determinar el CAS, a partir de espectroscopía de reflectancia difusa NIR. Este potencial permite usar los resultados para la gestión asociadas al manejo de suelos y cultivos y, en particular, monitorear propiedades, así como condiciones de riego, permitiendo que la toma de decisiones asociadas a la cuantificación de riego.
Es necesario continuar retroalimentando las bases de datos de este tipo de modelos, para robustecerlos y aumentar su capacidad predictiva. Para esto, se puede considerar la toma de espectros in situ y comparar los resultados obtenidos, al trabajar con muestras inalteradas y alteradas y concluir cuáles son más adecuadas para el mejoramiento de los modelos.