INTRODUCCIÓN
Uno de los retos del siglo XXI es mitigar el impacto ambiental producido por los metales pesados provenientes de actividades antropogénicas de sectores industriales, como: explotaciones mineras, fotografía, cerámicas, pinturas, galvanoplastia, electrónica y curtiembres, entre otras (León, Córdoba y Carreño, 2016; Gómez et al., 2019). Esto se debe a que dichos contaminantes inorgánicos no se biodegradan, se bioacumulan y se biomagnifican a lo largo de la cadena trófica, trayendo impactos negativos al ecosistema (Londoño-Franco, Londoño-Muñoz y Muñoz-García, 2016).
De acuerdo con lo anterior, según la Organización Mundial de la Salud (OMS, 2011) son trece los metales pesados con mayor incidencia en la salud y en el ambiente, entre los cuales se encuentran: Hg, Pb, Cr, Mn, Zn, Cu, Co, Ti, As, Cd, Ni, Sn y Fe. Por esta razón, universidades como Columbia y Yale, desde 1999, han desarrollado sistemas de evaluación de desempeño ambiental, entre los cuales se encuentra el indicador de desempeño ambiental (EPI, por su sigla en inglés), el cual permite medir las políticas ambientales de 180 países, los cuales deben relacionarse con las metas propuestas de los Objetivos del Desarrollo Sostenible, promulgados en la Agenda 2030 (Ojeda, Spoor y Estrada, 2017).
Por esta razón, los metales pesados se han convertido de uno de los 24 indicadores del EPI, que forman parte del objetivo y de la política de salud ambiental; de ellos, el único metal que se tiene referenciado por su alto grado de toxicidad y por las repercusiones en la salud, en contraste con los trece catalogados por la OMS, corresponde al plomo. Esto se debe a que, dicho contaminante inorgánico ha sido clasificado como una amenaza ambiental (por su prevalencia en el agua, suelo y aire) y la salud de mujeres embarazadas y niños (Wendling et al., 2018), y la medición en la exposición a este metal se emplea el número de años de vida ajustados por discapacidad estandarizados por edad (AVAD) que se pierden por cada 100 000 personas, debido a este riesgo. Teniendo en cuenta este último aspecto, y lo mencionado anteriormente, la población infantil es sensible a esta sustancia, dado que puede absorber de cuatro a cinco veces más que un adulto, lo cual puede ocasionar problemas cognitivos como retraso metal, dificultades de aprendizaje, trastornos de conducta, anemia, daño en los riñones y el cerebro, debilidad muscular. Para el caso de las mujeres en etapa de embarazo, puede llevar a malformaciones fetales, nacimientos prematuros e, incluso, a producir abortos espontáneos (Abadin et al., 2007; Wendling et al., 2018).
El plomo (Pb) es un metal de número atómico 82, masa atómica 207,20 g/mol, ubicado en el grupo 14, el cual tiene 38 isotopos, 2 estados de oxidación usuales, 2+ y 4+ y 514 minerales a nivel de la corteza terrestre que contienen este elemento en su composición química (Barthelmy, 2014). A nivel de sus aplicaciones se encuentran: baterías, metalurgia, industria farmacéutica, pigmentos, tuberías (ATSDR, 2007).
En cuanto a las repercusiones a la salud que puede ocasionar una exposición prolongada al plomo se encuentran: daño en los riñones, el sistema nervioso central (SNC) y el esperma, hemorragias retinianas y neuritis del nervio óptico, abortos espontáneos, y efectos negativos sobre el aprendizaje y el comportamiento en los niños (ATSDR, 2007; Abadin et al., 2007). En contraste, una de las enfermedades profesionales desarrollada por este metal, y que en el contexto de Colombia se encuentra contemplada en el Decreto 2566 de 2009, corresponde al saturnismo.
Con relación a los límites máximos permisibles (LMP - mg/L Pb), para el caso de las aguas residuales, se tienen establecidos particularmente para las industrias de curtiembres a nivel de algunos países del continente sur americano, así: Guayaquil y Guatemala (0,2) (Legislación Secundaria del Ministerio de Ambiente de Guayaquil, 2004; Ministerio de Ambiente y Recursos Naturales de Guatemala, 2005); Perú (0,5) (Sedapal, 2009); para Colombia, Venezuela y Brasil no se contempla en las regulaciones correspondientes.
Para el caso de EE. UU., el LMP es de 0,10 mg/L Pb (U.S. Environmental Protection Agency, 2014); en el continente europeo, Finlandia, Grecia e Indonesia no lo contemplan en sus regulaciones, a diferencia de Madrid y Bangladesh que exponen un LMP de 1,0 y 0,1, respectivamente (Consejería de Presidencia y Portavocía del Gobierno Comunidad de Madrid, 2005; UNEP, 1999).
En complemento, atendiendo al EPI, cabe indicar que de acuerdo con la métrica de 2018 dada por la Universidad de Yale, los países que lideran el manejo adecuado de la contaminación producida por el plomo están: Suecia, Alemania, Japón y Finlandia; esto se debe a que han mejorado las regulaciones y mecanismos de monitoreo en la salud humana y ambiental, a diferencia de países como Afganistán, Haití, Pakistán y Bangladesh, que se encuentran catalogados como rezagados en la exposición a Pb, dado que en sus actividades industriales continúan empleando este metal, sin implementar políticas rigurosas que conlleven al aseguramiento de la salud de las personas expuestas, así como el manejo de los residuos generados y que incorporan dicho metal (Wendling et al., 2018).
Por otra parte, entre los métodos de remoción reportados para el Pb se encuentran las tecnologías convencionales, como: adsorción con carbón activado, precipitación química (en soluciones alcalinas, precipitando como Pb(OH)4) y coagulantes inorgánicos. De igual forma, las tecnologías avanzadas empleadas son: filtración por membrana, ultrafiltración, microfiltración, electrodiálisis, electrocoagulación, ósmosis inversa, intercambio iónico y cementación (Caviedes et al., 2015; García V., García U. de Plaza, 2016). Estas dos técnicas, aunque son muy eficientes, presentan también ciertas desventajas como: alto costo en su implementación y mantenimiento en sistemas de tratamiento de aguas residuales (STAR), generan una cantidad considerable de lodos contaminados con el metal removido y, a su vez, no son asequibles económicamente para las diferentes industrias que empleen este metal en sus procesos.
Por esta razón, la presente investigación se enfocó en realizar una revisión bibliográfica entre el periodo de 2010 a 2019, con relación a las tecnologías no convencionales (también conocidas como verdes o limpias, (Amaringo y Hormaza, 2018), que se han empleado para la remoción de Pb (II), presente en aguas residuales sintéticas o industriales. El interés de los autores por indagar estas técnicas se debe a que, en comparación con los métodos anteriormente mencionados, son de fácil adquisición, implementación y mantenimiento en los STAR, no generan un volumen de lodo considerable yasu vez son biodegradables, lo cual permite que sean reutilizados como compostaje; entre los métodos no convencionales indagados se encuentran: biopolímeros, biorremediación y residuos agroindustriales; esto con el fin de analizar su aplicación en matrices reales.
Metodología: La investigación llevada a cabo fue de tipo exploratoria-cualitativa, dado que los autores realizaron una revisión bibliográfica.
Los criterios de búsqueda de artículos tuvieron presentes las siguientes palabras clave: tecnología no convencional, plomo, absorción, remoción, biopolímeros, biorremediación y residuos agroindustriales. Posteriormente, se elaboraron dos matrices en Excel para analizar los contenidos de acuerdo con los escritos seleccionados; para la primera matriz, se observó año del artículo, revista, país, autor(es), tipo de tecnología no convencional, fuente bibliográfica; por último, para la segunda matriz, los aspectos a analizar correspondieron a: tipo de tecnología no convencional, especie química, tipo y volumen de agua residual, concentración inicial del contaminante, pH óptimo de remoción, tiempo de contacto óptimo, temperatura, tamaño de partícula, dosis, agitación, modificación química, modelo cinético e isoterma de adsorción, capacidad máxima de adsorción y porcentaje de eficiencia.
RESULTADOS
Biopolímeros empleados en la bioadsorción de Plomo
De conformidad con lo expuesto, en la tabla 1 se observa que los países que han reportado más investigaciones en torno a los biopolímeros, como tecnologías no convencionales en la remoción de plomo presente en aguas residuales, corresponden a India, Malasia, China, Singapur y Nigeria; de igual forma, los reportes investigativos se han expuesto en revistas internacionales.
De acuerdo con los resultados expuestos en las tablas 1 y 2, y según la revisión bibliográfica realizada entre 2010 y 2019, correspondiente a artículos científicos relacionados con la remoción de Pb empleando biopolímeros, se seleccionaron nueve documentos.
Dentro de los biopolímeros que se han investigado, de esos nueve, se encuentran cinco artículos relacionados con quitosano; tres de ellos con modificación química donde la eficiencia de remoción osciló entre 95 % a 95,3 %, mientras que el quitosano sin modificación química la eficiencia fue del 80 %,lo que indica que las modificaciones químicas mejoraron la eficiencia por encima de un 15%.
Adicionalmente, las capacidades de máxima adsorción fueron más altas también con el quitosano modificado entre 182,5 a 189 mg/g.
Por otro lado, dos artículos, de los nueve seleccionados, relacionaron a la queratina con porcentajes de remoción del 93,5%, con una capacidad de máxima adsorción entre 32,36 y 70,42 mg/g; los valores difirieron, dado que las dosis empleadas del bioadsorbente fueron de 1 g/l y 6 g/l, respectivamente.
Por último, los dos artículos restantes hacen referencia a dos biopolímeros como el almidón y la gelatina con polietilenimina, cuyos porcentajes de remoción corresponden al 80 % y 89,9 %, respectivamente, y la capacidad de máxima adsorción solo fue reportada en la gelatina modificada con un valor de 80,6 mg/g.
Biorremediación empleada en la bioadsorción de plomo
Cabe resaltar que las metodologías investigativas dilucidadas en los reportes muestran su aplicación en matrices de aguas residuales sintéticas. En la tabla 3. se observa que los países que han reportado más investigaciones en torno a la biorremediación, como tecnologías no convencionales en la remoción de plomo presente en aguas residuales, son: India, China, Colombia, Corea, Egipto, España, Irán; de igual forma, los reportes investigativos se han expuesto en revistas internacionales y una nacional.
De acuerdo con los resultados de las tablas 3 y 4, de la revisión bibliográfica realizada entre 2010 y 2019, correspondiente a artículos científicos relacionados a la remoción de plomo empleando la biorremediación, se seleccionaron doce. De estos, seis hacen referencia a investigaciones con algas rojas, cinco a bacterias y los restantes a levaduras y hongos.
En cuanto a las eficiencias reportadas en algas, se encontró que estas oscilan entre el 87 % y 97,3 %, mientras que a nivel de las bacterias el intervalo se encuentra entre el 0 % al 98 %, donde cero se reportó con la especie Brevibacterium sp. y el 98 % con la Bacillus licheniformis.
Por último, con relación al parámetro de capacidad de máxima absorción el que reportó un mayor valor fue con la bacteria Klebsiella sp con 140,19 mg*g-1. Cabe resaltar que las metodologías investigativas dilucidadas en los reportes investigativos muestran su aplicación en matrices de aguas residuales sintéticas.
En la tabla 5, se observa que los países que han reportado más investigaciones en torno a los residuos agroindustriales, como tecnologías no convencionales en la remoción de plomo presente en aguas residuales, corresponden a Colombia, Nigeria, Perú, India, Indonesia, Francia, Irán, Malasia, México, Romania, Serbia y Zimbabue. De igual forma, los reportes investigativos se han expuesto en revistas internacionales y nacionales, y que este tipo de tecnologías son las de más tendencia en investigación según la indagación realizada, donde son 24 residuos agroindustriales los que se han investigado, y que su aplicación se ha dado tanto en aguas residuales sintéticas y industriales (para algunos).
Con relación a las tablas 5 y 6, ha sido amplio cada uno de los residuos agrícolas empleados para la remoción de plomo, entre los cuales se encuentran desde semillas, cáscaras de diferentes frutas, bagazo, pseudotallo de plátano, astillas de un material vegetal, residuos de diferentes jugos, entre otros. A su vez, con respecto a las variables óptimas de adsorción se presenta que los residuos agrícolas de mayor eficiencia con un 100 % se reportan las semillas de guayaba y cáscara de melón y alrededor del 98 % al 99 % se encuentran las astillas de eucalipto, la cáscara de ñame y el bagazo de palma africana.
CONCLUSIONES
Al realizar un comparativo entre los tres tipos de tecnologías no convencionales (biopolímeros, biorremediación y residuos agroindustriales) se observa que las publicaciones que más se han reportado son las de los residuos agroindustriales con respecto a las demás. A su vez, es importante indicar que los porcentajes de mayor eficiencia con un 100 % corresponden a las semillas de guayaba y la cáscara de melón, seguidas de las técnicas de biorremediación con porcentajes del 98 % y la de biopolímeros entre el 80 % al 95 %.
Es importante indicar que, para obtener los porcentajes altos de remoción para los metales pesados, es necesario optimizar cada una de las variables en las técnicas no convencionales como el pH, la temperatura, el tamaño de partícula, el tiempo de contacto, la cantidad de biomasa, el tiempo de agitación y la concentración inicial de la solución del contaminante.
Las cinéticas de adsorción que se reportaron en las tres técnicas no convencionales se encuentran las de pseudosegundo orden, Elovich, Thomas y Bangham.
Las isotermas de adsorción que se reportaron en las tres técnicas no convencionales se encuentran las de Langmuir, Freundlich, Redlich-Peterson, Themkin y Khan.
Al llevar a cabo este tipo de revisiones, se pretende que las industrias que viertan plomo en sus aguas residuales apliquen este tipo de tecnologías, por sus altos porcentajes de remoción, de fácil adquisición, económicos y, lo más importante, cumplan las normas ambientales y que no generen más impactos negativos al ecosistema.