SciELO - Scientific Electronic Library Online

 
vol.18 issue1Analysis of the Role of Intermediaries in the Traditional Agricultural Market. Case Study Antioquia, Colombia.Thermal Comfort in Residential Complexes as life Quality Enhancers author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Lasallista de Investigación

Print version ISSN 1794-4449

Rev. Lasallista Investig. vol.18 no.1 Caldas Jan./June 2021  Epub Mar 06, 2022

https://doi.org/10.22507/rli.v18n1a2 

Original articles

Another Solution to the Schrödinger-Langevin Equation1

Una Solución Alterna a la Ecuación de Schrödinger-Langevin

Uma Solução Alternativa para a Equação Schrödinger-Langevin

Jairo Alonso Mendoza-Suárez2  * 
http://orcid.org/0000-0002-7164-8010

Juan Carlos López-Carreño3 
http://orcid.org/0000-0001-9283-9257

Rosalba Mendoza-Suárez4 
http://orcid.org/0000-0002-3698-6014

2 Doctor en Ciencias Naturales Física, de la Universidad Industrial de Santander, Bucaramanga, Colombia, docente titular, investigador de planta de la Universidad de Pamplona, Colombia. Director del grupo de investigación Integrar, correo: jairoam@unipamplona.edu.co / ORCID: 0000-0002-7164-8010.

3 Doctor Ciencias Matemáticas, Universidad Nacional de Colombia, Medellín, Colombia, docente titular investigador de la Universidad de Pamplona, Colombia. Correo: jclopez@unipamplona.edu.co / ORCID: 0000-0001 -9283-9257.

4 Maestría en Matemáticas, Universidad Industrial de Santander, Bucaramanga, Colombia, docente titular investigadora de la Universidad de Pamplona, Colombia. Correo: rosalbame@unipamplona.edu.co / ORCID: 0000-0002-3698-6014.


Abstract

Introduction:

an alternative solution to the Schrödinger-Langevin equation is presented, where the temporal dependence is explained, assuming a Coulomb potential. Finally, the trajectory equations are found.

Objective:

in this paper we contribute by presenting a detailed and simple solution of the Schrödinger-Langevin equation for a Coulomb potential.

Materials and Methods:

using an appropriate ansatz, we solve the Schrödinger-Langevin equation, finding the expected values of position and moment.

Results:

a simple method was presented to find the expected position and moment values in the Schrödinger-Langevin equation, the ansatz used to find these solutions allows the model to be generalized in a certain way to electric potentials and harmonic oscillators.

Conclusions:

the model used to solve the Schrödinger-Langevin equation, allowed to find the expected values of position and moment of a particle in a Coulomb potential, the temporal dependence of such solutions is made explicit, which allows finding the path equations of the particles.

Keywords: Schrödinger-Langevin equation; quantum friction; interpretation of Bhom; expected value of the position

Resumen

Introducción:

se presenta una solución alternativa a la ecuación de Schrödinger-Langevin, donde se explica la dependencia temporal, asumiendo un potencial de Coulomb. Finalmente, se encuentran las ecuaciones de trayectoria.

Objetivo:

en este trabajo hacemos una contribución presentando una solución detallada y sencilla de la ecuación de Schrödinger-Langevin para un potencial de Coulomb.

Materiales y Métodos:

usando un ansatz apropiado, solucionamos la ecuación de Schrödinger-Langevin, encontrando los valores esperados de posición y momento.

Resultados:

se presentó un método sencillo para hallar los valores esperados de posición y momento en la ecuación de Schrödinger-Langevin, el ansatz utilizado para encontrar estas soluciones permite generalizar en cierta forma el modelo a potenciales eléctricos y osciladores armónicos.

Conclusiones:

el modelo utilizado para solucionar la ecuación de Schrödinger-Langevin, permitió encontrar los valores esperados de posición y momento de una partícula en un potencial de Coulomb, se explicita la dependencia temporal de tales soluciones lo que permite encontrar las ecuaciones de trayectoria de las partículas.

Palabras clave: Ecuación de Schrödinger-Langevin; fricción cuántica; interpretación de Bhom; valor esperado de la posición

Resumo

Introdução:

uma solução alternativa para a equação de Schrödinger-Langevin é apresentada, onde a dependência temporal é explicada, assumindo um potencial de Coulomb. Finalmente, existem as equações de caminho.

Objetivo:

neste trabalho fazemos uma contribuição apresentando uma solução simples e detalhada da equação de Schrödinger-Langevin para um potencial de Coulomb.

Materiais e métodos:

usando um ansatz apropriado, resolvemos a equação de Schrödinger-Langevin, encontrando os valores esperados de posição e momento.

Resultados:

foi apresentado um método simples para encontrar os valores esperados de posição e momento na equação de Schrödinger-Langevin, o ansatz utilizado para encontrar essas soluções permite que o modelo seja generalizado de certa forma para potenciais elétricos e osciladores harmônicos.

Conclusões:

o modelo utilizado para resolver a equação de Schrödinger-Langevin, permitiu encontrar os valores esperados de posição e momento de uma partícula em um potencial de Coulomb, sendo explicitada a dependência temporal de tais soluções, o que permite encontrar as equações de caminho das partículas.

Palavras-chave: Equação de Schrödinger-Langevin; atrito quântico; interpretação de Bhom; valor esperado da posição

Introduction

The macroscopic objects obey Newton's equations of motion, where is the position of the particle in time and is the force acting on the particle. By giving values for both position and velocity in a time it is possible to calculate the trajectory of an object and as a result it is possible to predict the position and velocity at a later time.

The article is organized as follows; in the first part the terms of the Schrödinger-Langevin equation are presented, in the second part we implement the proposed solution, as a linear exponential function in , in addition we find the equations of movement, and finally a discussion of this result is made.

At the molecular and atomic level objects obey the laws of quantum mechanics, in this way Newton's laws are not strictly valid, the unique concept of trajectory is no longer literally valid. This is the fundamental basis of quantum mechanics, which is not local, each component of the system has influence on the movement of any other part which is reciprocal.

In this paper we take the Schrödinger-Langevin equation. To study processes of diffusion and dissipation at the quantum level, we generally start from the Schrödinger-Langevin equation in the study of the Brownian movement (Kostin 1972), which contains two new terms, which include a friction constant and the other one ends a random potential. Taking a Coulomb potential and find a possible solution to the Schrödinger-Langevin equation, comparing the interpretations according to quantum mechanics and the casual interpretation of Bhom (Bohm D, 1996) by quantum trajectories.

The article is organized as follows; in the first part the terms of the Schrödinger-Langevin equation are presented, in the second part we implement the proposed solution, as a linear exponential function in , in addition we find the equations of movement, and finally a discussion of this result is made.

Materials and Methods

The Schrödinger-Langevin equation

In quantum mechanics any physical system can be associated with a Hermitic operator H^ , which determines the temporal evolution of the system according to:

iψt=H^ψ

In the Langevin equation (Chia-ChunChou, 2017) of motion, the Hamiltonian operator includes the expression of the potential V L associated with quantum friction processes; the Schrödinger equation in one dimension is given by (Kostin 1972):

iψt=-22m2ψx2+Vxψx,t+VRψx,t+VLψx,t (1)

where (Kostin 1972):

VL=Γ2i mlnψ(x,t)ψ*(x,t)+Wt (1)

VR is the potential associated to the random force (in this work it is taken as null), the term W(t) that originates from the potential associated with friction, can be removed by introducing the transformation:

ψx,t=eiθ(t)ϕx,t (2)

making the corresponding substitutions, you get to:

iϕt=-22m2ϕx2+Vxϕx,t+Γ2i mϕx,t lnϕx,tϕ*x,t (3)

also

θ't+Γθt=-Wt

The equation (3) is the one we use to study the behavior of a particle of mass m in a Coulomb potential.

Solution assuming Coulomb potential

Assuming a Coulomb potential V = -qEx = - kx; k = qE, the equation (3) takes the form:

iϕt=-22m2ϕx2+kxϕx,t+Γ2i mϕx,t lnϕx,tϕ*x,t (4)

Assuming as solution of the equation (4) of the form:

ϕx,t=Ax,tei(α1tx+α2t) (5)

performing the first time derivative

ϕt=eiα1x+α2A'+iAα'1x+α'2,

of the second derivative with respect to time, we obtain

2ϕx2=eiα1x+α22Ax2+2 iα1Ax-α12A,

Equating the imaginary and real parts, the system of equations is obtained:

A'=-mα1Ax (6)

-Aα'1x+α'2=-22m2Ax2-α12A-kxAΓmAα1x+α2 (7)

Assuming the function A(x; t) = G(x)F(t) (separable variables); of the equation (6)

F'tα1F=-GmGx=a

Where a is constant. Then:

Gx=Ce-amx (8)

How A(x;t) = G(x)F(t) and considering that

1G2Gx2=m2a22,

substituting in (7) we obtain:

-α'1x+α'2=-22mm2a22-α12-k x+Γmα1x+α2 (9)

Equation of coefficients in x on both sides that leads to:

- α1't=-k+Γmα1t

This is a first order differential equation for a (1), it is found that

-α1't=-k+Γmα1t;             α1t=be-Γtm+kmΓ, (10)

Independent terms:

α2'+Γmα2=a2m2-2mbe-Γtm+k mΓ2

Integrating you get

α2t=a2m22Γ2-k2m22Γ3+b22Γe2Γtm-bkΓt eΓtm+de-Γtm, (11)

d constant; Solving for F (t)

F'F=aα1=ab e-Γtm+ kmΓ,

Ft=C eamΓkt-b e-Γt/m, (12)

where C is constant. Then the A function takes the form:

Ax,t=C e-amx e-amΓk t-b  e-Γt/m, (13)

Taking the equation (2), (5), and (13). You finally get the function ψx,t

ψx,t=Ceiθ(t) e-amx e-amΓkt-b  e-Γt/meiα1tx+α2t, (14)

With α1(t),α2(t) given by the equations (10) and (11). Assuming a suggested interpretation of quantum theory in terms of hidden variables, type Bohm (Bohm D. y B. J. &. B. J. S. Hiley, 1996. Bohm D. 1952).

ψx,t=Rx,teISx,t/, (15)

Where R(x; t); S(x; t) are real functions, then we have:

Sx,t=2ilnψψ*, (16)

taking the equation found in (14) and (16) substituting in (4) you get:

Sx,t=θt+α1tx+α2t, (17)

According to (Bohm D. (1952)):

p=mv=Sx=mxt= α1t, (18)

The equation of movement is:

Sx=mb e-Γtm+ kmΓ,

xt=1mΓb  e-Γt+kt+Cte. (19)

Results

Equation 19 allows to make the representation of a quantum system as the spatial configuration that evolves in time, as a trajectory under the action of the wave function, this is the main objective of the De Broglie-Bohm theory (or theory pilot wave (Avanzini, 2016)). However, its standard formulation refers to the statistical set of its possible trajectories. The statistical set is introduced to establish the exact correspondence (Born's rule) between the probability density in the spatial configurations and the quantum distribution, that is, the squared modulus of the wave function. The pilot wave theory allows a formally self-consistent representation of quantum systems as the trajectory of a particle.

Equation 19 gives us the first result of the position of the particle as a function of time. Now from (Kostin 1972), where derive a Schrödinger equation for a Brownian particle interacting with a thermal environment. The function W(t) of the equation (4) has the form:

Wt=-Γ2iψ*lnψψ*ψ dx,

Wt=- Γ F2G2θt+α1tx+α2t dx. (20)

The integrals raised in equation 20 have as a solution

0Gx2  dx=c22am;          0Gx2x dx=c224a2m2 ,

Without considering the interpretation of Bohm (16), we find the equation of time evolution of the expected value of the position x(t),

xt=ψx,t2  x  dx,

xt=c224a2m2eagb e-gt+ktm, (21)

Discussion

In this paper the authors find a solution to the Schrödinger-Langevin equation, which includes terms of friction, is an article in which a linear exponential solution is proposed in, according to the expected behavior in the movement equation.

The solution obtained in the equation (19) contains a series of constants that must be implemented according to the initial conditions that are given according to the experimental setup (Torres del Castillo G.F. 2016) Analogously, the solution obtained in the equation (21) which has a series of constants associated, which does not allow directly compare the two solutions.

Generally, in the literature there are studies of the behavior of the harmonic oscillator, in addition to the oscillator in an electric field, here we look for an expression in which only the contribution of an electric field is considered, since when considering the case of the oscillator a slip is obtained of energy levels.

Conclusions

The model used to solve the Schrödinger-Langevin equation, allowed to find the expected values of position and moment of a particle in a Coulomb potential, the temporal dependence of such solutions is made explicit, which allows finding the path equations of the particles.

Our results constitute an additional reason to formulate hydrodynamical versions of quantum evolution equations (Hatifi 2019). Although hydrodynamics is a natural language in this context, the mathematics is compatible with other theories of continuum mechanics, for example, elasticity (Holland 2005).

The trajectories of particles in a fluid can be considered analogous to full-wave ray theory in the limit of geometric optics. The last (classical) limit is obtained in circumstances where the internal potential and force are negligible compared to the external potential and force of the body, respectively. The result is a fluid dynamic representation of the classical Hamilton-Jacobi theory. It should be taken into account that this limit describes a continuous set of trajectories that do not interact moving in the potential V (as discussed in Holland 1996), instead of only one. The equation (21) allows to calculate possible quantum trajectories of the Broglie Bohmm type (Mariya 2020), as a classical limit, only the initial path conditions should be considered and the equation allows to determine the temporal evolution of the system.

Acknowledgments

This work was carried out within the research project located with code 400-156.012-032 (GA313-BP-2017-PHASE II) in the Vicerrectoria for Investigations of the University of Pamplona.

References

Avanzini, F., Fresch, B. & Moro, G.J. Pilot-Wave Quantum Theory with a Single Bohm's Trajectory. Found Phys 46, 575-605 (2016). https://doi.org/10.1007/s10701-015-9979-1. [ Links ]

Chia-ChunChou. "Hydrodynamic analysis of the Schrödinger-Langevin equation for wave packet dynamics," Physics Letters A, Volume 381, Issue 39, 17 October 2017, Pages 3384-3390. [ Links ]

Bohm D. y B. J. &. B. J. S. Hiley, (1996). "The Undivided Universe: An Ontological Interpretation of Quantum Theory," Synthese, pp. 145-165. [ Links ]

Bohm D. (1952). "A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables," Phys. Rev., vol. 85, n° 15, p. 166. [ Links ]

Kostin J. C. M. D. (1972), "On the Schrödinger-Langevin Equation," The journal of chemical physics, vol. 57, no. 9, pp. 3589-3591. [ Links ]

Torres del Castillo G.F. (2016). "Solutions of the Schrödinger equation given by solutions of the Hamilton-Jacobi equation," Revista Mexicana de Física, vol. 62, p. 534-537. [ Links ]

Hatifi, M., Di Molfetta, G., Debbasch, F. et al. Quantum walk hydrodynamics. Sci Rep 9, 2989 (2019). https://doi.org/10.1038/s41598-019-40059-x. [ Links ]

Holland P.R., "Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation", Annals of Physics, 2005, Vol 315, p 505-531. [ Links ]

Holland P.R., in Bohmian Mechanics and Quantum Theory: An Appraisal, eds. J.T. Cushing et al. (Kluwer, Dordrecht, 1996) 99. [ Links ]

Mariya Iv. Trukhanova, Gennady Shipov, Geometrical interpretation of the pilot wave theory and manifestation of spinor fields, Progress of Theoretical and Experimental Physics, Volume 2020, Issue 9, September 2020, 093A01, https://doi.org/10.1093/ptep/ptaa106. [ Links ]

1 Artículo original, derivado del proyecto de investigación, "Estudio de la ecuación de Langevin asociada a procesos cuánticos de disipación", financiado por la Vicerrectoría de Investigaciones de la Universidad de Pamplona, con código 400-156.01 2-032 (GA313-BP-2017-PHASE II), realizado entre el año 2018 a 2019.

*Los autores declaran que no tienen conflicto de interés

Received: June 06, 2019; Accepted: July 31, 2021

*Autor para Correspondencia: Jairo Alonso Mendoza Suárez, correo: jairoam@unipamplona.edu.co

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License