SciELO - Scientific Electronic Library Online

 
vol.15 issue3Proposed empirical model for estimating ‘Valencia’ orange (Citrus sinensis L. Osbeck) productivity in the Colombian low tropicsProtection of tomato plants against Fusarium oxysporum f. sp. lycopersici induced by chitosan author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Ciencias Hortícolas

Print version ISSN 2011-2173

rev.colomb.cienc.hortic. vol.15 no.3 Bogotá Sep./Dec. 2021  Epub Jan 07, 2023

https://doi.org/10.17584/rcch.2021v15i3.12872 

Section of vegetables

Genotype-environment interaction and guata potato yield (Solanum tuberosum L.) in the Department of Nariño (Colombia)

Interacción genotipo ambiente para rendimiento de papa guata (Solanum tuberosum L.) en el departamento de Nariño (Colombia)

ASTRID VIVIANA SANTACRUZ-BENAVIDES1 
http://orcid.org/0000-0002-3306-6263

WILMER LIBEY DELGADO-GUALMATÁN1 
http://orcid.org/0000-0001-7349-0889

TULIO CÉSAR LAGOS-BURBANO1 
http://orcid.org/0000-0001-9222-4674

DAVID ESTEBAN DUARTE-ALVARADO1  2 
http://orcid.org/0000-0002-8896-3594

1 Universidad de Nariño, Faculty of Agricultural Sciences, Grupo de Investigación en Producción de Frutales Andinos (GPFA), San Juan de Pasto (Colombia).


ABSTRACT

Estimating the genotype-environment interaction (GEI) for potato genotype yield is very useful for the identification of outstanding genetic material that can adapt to specific environmental conditions and shows productive potential for breeding programs, selection processes and cultivar recommendations because it improves the efficiency of the genetic improvement process. The objective of this study was to determine the GEI of yield, expressed as t ha-1, in 21 potato genotypes. Four municipalities in the Department of Nariño were considered: Tangua, Pupiales, Imues, and Pasto. A randomized complete block design and an additive main effects and multiplicative interaction model (AMMI model) were used. Highly significant differences between the environments were found across the genotypes and GEI. Of the total variation, 42.43% was explained by the environment, 13.84% by the genotypes, and 15.49% by the GEI. The genotypes that showed stable behaviors were UdenarStGua55, UdenarStGua78, UdenarStGua24, UdenarStGua61, UdenarStGua20, and UdenarStGua98. Genotypes UdenarStGua78 and UdenarStGua98 stood out with 53.49 and 48.42 t ha-1. Furthermore, genotypes UdenarStGua93, UdenarStGua97, and UdenarStGua91 showed a positive interaction with the environments of Tangua and Pupiales. Similarly, genotypes UdenarStGua58, UdenarStGua83, UdenarStGua57, and UdenarStGua87 positively interacted with Pasto, while genotypes UdenarStGua78 and UdenarStGua98 showed positive interactions with Imues. The genotypes displayed different behaviors in response to the areas where they were established, which varied in altitude, soil type, and environmental conditions.

Additional keywords: AMMI; genotype by environment; variation; stability; Andean tubers

RESUMEN

Estimar la interacción genotipo por ambiente (IGA) del rendimiento en genotipos de papa es de gran utilidad para la identificación de material genético sobresaliente, con adaptación a condiciones ambientales específicas y con potencial productivo para los programas de mejoramiento, procesos de selección y recomendación de cultivares, dado que permite mejorar la eficiencia del proceso de mejoramiento genético. El objetivo de este trabajo fue determinar la IGA del rendimiento expresado en t ha-1 para 21 genotipos de papa guata. Se consideraron cuatro municipios del departamento de Nariño, que corresponden a Tangua, Pupiales, Imués y Pasto. Para analizar los datos se utilizó el Diseño de Bloques Completos al Azar y el modelo de efectos principales aditivos e interacción multiplicativa (Modelo AMMI). Se presentaron diferencias altamente significativas entre ambientes, genotipos y para la IGA. La variación total fue explicada en 42,43% por el ambiente, en 13,84% por los genotipos y en 15,49% por la IGA. Los genotipos que presentaron un comportamiento estable fueron UdenarStGua55, UdenarStGua78, UdenarStGua24, UdenarStGua61, UdenarStGua20 y UdenarStGua98, destacándose los genotipos UdenarStGua78 y UdenarStGua98 con 53.49 y 48.42 t ha-1. Se determinó que los genotipos UdenarStGua93, UdenarStGua97 y UdenarStGua91 presentaron una interacción positiva con los ambientes de Tangua y Pupiales, para Pasto los genotipos UdenarStGua58, UdenarStGua83, UdenarStGua57 y UdenarStGua87 y en Imués los genotipos UdenarStGua78 y UdenarStGua98. Se presentaron genotipos con comportamientos diferentes de acuerdo con la zona donde se establecieron, las cuales se diferenciaron por la altitud, el tipo de suelo y las condiciones ambientales.

Palabras clave adicionales: AMMI; genotipos por ambiente; variación; estabilidad; tubérculos Andinos

INTRODUCTION

The potato (Solanum tuberosum L.) is one of the more important crops for human nutrition (Salcedo and Guzmán, 2014). It is grown under different production systems, and the highest diversity is found in South America, its center of origin (Sepúlveda-Cano et al., 2017; Khoury et al., 2016). There are more than 3000 cultivars of this tuber, and it is adaptable to different altitudes(Berdugo-Cely et al., 2017; Caro et al., 2019; Gil-Rivero et al., 2019). Most native potatoes belong to the Phureja group and have great scientific and conservation value for farmers given their organoleptic, agricultural, nutritional properties and cultural identity (Calliope et al., 2018). Colombia has a high genetic diversity of potatoes that is useful to improvement programs; furthermore, it has one of the most important and promising potato germplasm collections (Berdugo-Celyet al., 2017). Given its favorable agroclimatic conditions for potato production, Colombia is considered a highly feasible region for large-scale cultivation of this plant material and the development of genetic improvement processes and programs (Ghislainet al., 2006). The largest potato production in Colombia is in the departments of Cundinamarca, Boyaca, Nariño and Antioquia, which together provide 91% of the total production area, where Nariño contributes 19% (Agronet, 2019). In 2020, the national average was 20.9 t ha-1, and the Department of Nariño reached 22.2 t ha.1 (MADR, 2020).

The assessment of work collections through genetic improvement programs represents an alternative for increasing potato crop yield. This evaluation sought to identify and select genotypes with outstanding yield and adaptability or stability in diverse environments, as well as the capacity to tolerate biotic (e.g., pests and diseases) and abiotic factors (e.g., drought and soil salinity, among others) that can damage crops (Picardi, 2018; Yahaya et al., 2015). The impact of these factors varies according to the genetic composition of the plant material and the environment where the crop is established (Cooper and Byth, 1996).

The response of genotypes to the environment is determined by estimating the genotype-environment interaction (GEI) (Vargas et al., 1999; Abbott and Pistorale, 2011; Salomón et al., 2015). This interaction is highly important in improvement programs and is a determinant factor in cultivar selection and recommendation processes since it allows improving the efficiency of the genetic improvement process (Sleper and Poehlman, 2006; Andrade et al., 2016; Márquez-Vasallo et al., 2020). The significance of GEI allows evaluating the behavior of genotypes (in this case, through yield) and determining whether genotypes adapt to the study areas or environments (Mohammed, 2017). The GEI enables the identification of superior genotypes and ideal conditions for their development (Lule et al., 2014; Thiyagu et al., 2013). Furthermore, it estimates the differential behavior of genotypes under contrasting conditions (i.e., agroecological, climatic, and agronomical) that influence plant growth and development(Haynes et al., 2012; Mohammadi et al., 2016; Tirado et al., 2018).

A GEI analysis is supported by an additive model of main effects and multiplicative interaction (AMMI) (Tirado et al., 2018). This model assesses the effect of the interaction in experimental plots, providing important and necessary data for the selection of varieties (Negash et al., 2013). The AMMI model shows the behavior of genotypes and environments through a biplot graph (Vargas and Crossa, 2000), while a principal components analysis (PCA) enables the identification and selection of superior genotypes based on their yield in a given environment (Adebola et al., 2013). A PCA is based on the decomposition of eigenvalues and can be applied to yield data (Gauch, 2006). On the other hand, biplot graphs provide information for drawing important conclusions about the environment and genotype (Elias et al., 2016).

It is necessary to identify genotypes with optimal yields that contribute to breeding programs and generation of varieties that would benefit potato producers. Therefore, this study aimed to determine the GEI of yield in 21 guata potato genotypes, selected based on their response to water stress conditions in previous studies, in four localities in the Department of Nariño.

MATERIALS AND METHODS

This research was conducted in four potato-growing regions in the Department of Nariño, Colombia, in the first half of 2019, located at 1°09'33.5" N and 77°16'34.6" W in the municipality of Pasto; 1°03'48.2" N and 77°25'14.2" W in Tangua; 1°04'08.1" N and 77°28'01.8" W in Imues, and 0°52'05.2" N and 77°37'15.1" W in Pupiales. These localities are distributed across four producing zones, with different altitudes and edaphic conditions, as shown in table 1.

Table 1. Altitude and edaphic conditions of the study zones. 

Loc Altitude (m a.s.l.) Tex pH OM (%) P (mg kg-1) Ca (cmol kg-1) Mg (cmol kg-1) K (cmol kg-1)
Pasto 2,820 Sandy- loam 6.4 2.75 72.83 8.26 3.67 1.39
Tangua 2,098 Loam 6.18 2.47 14.52 6.21 2.58 0.51
Imues 2,108 Loam 6.46 1.39 39.22 6.62 2.00 0.85
Pupiales 2,966 Loam 5.3 13.7 41.68 4.62 1.47 1.74

Loc = locality; m a.s.l. = meters above sea level; Tex = soil texture; OM = organic matter; P = phosphorous; Ca = calcium; Mg = magnesium; K = potasium.

This study evaluated 20 experimental guata potato clones from the work collection of the Universidad de Nariño, which were previously selected and assessed under water stress conditions in a greenhouse. Additionally, a commercial control (‘Diacol Capiro’) was used (Tab. 2), a widely adaptable variety that is grown in several departments of Colombia between 2,000 and 3,200 m a.s.l. The commercial control shows high chip production quality and has a high industrial demand (Porras and Herrera, 2015).

Table 2. Guata potato (S. tuberosum var. tuberosum) genotypes selected from the work collection of the Universidad de Nariño. 

Genotype Code Source Origin
1 ‘Unica M2’ 20 ‘Unica M2’ (‘Unica Vieja La Cocha’) Colombia
2 ‘Diacol Capiro’ 24 ‘Diacol Capiro’ Colombia
3 Suprema M2 31 ‘Pastusa Suprema’ certificada M2 Colombia
4 UdenarStGua55 55 CIP 377744.1 Kori-INIA Peru
5 UdenarStGua57 57 CIP 384866.5 Amarilis-INIA Peru
6 UdenarStGua58 58 CIP 387164.4 LBr-40 Peru
7 UdenarStGua59 59 CIP 389746.2 Peru
8 UdenarStGua61 61 CIP 391011.17 Peru
9 UdenarStGua68 68 CIP 392657.171 Peru
10 UdenarStGua71 71 CIP 393077.159 Peru
11 UdenarStGua72 72 CIP 393079.24 Peru
12 UdenarStGua78 78 CIP 393371.58 INIA 310 Peru
13 UdenarStGua82 82 CIP 394904.20 Peru
14 UdenarStGua83 83 CIP 395112.32 Peru
15 UdenarStGua87 87 CIP 396012.266 Peru
16 UdenarStGua89 89 CIP 396034.268 Peru
17 UdenarStGua91 91 CIP 396285.1 Peru
18 UdenarStGua93 93 CIP 397196.3 Peru
19 UdenarStGua94 94 CIP 398190.404 Peru
20 UdenarStGua97 97 CIP 398193.553 Peru
21 UdenarStGua98 98 CIP 398208.620 Peru

The fresh weight of the tuberes, expressed as kilograms per plot, was recorded at harvest. Furthermore, the number of tons per hectare were calculated. Data were recorded at 180 d after planting.

A complete randomized block design with four repetitions was used. The experimental plot was formed with four rows, and the useful plot comprised two rows of five plants, separated by a distance of 0.4 m between plants and 1.20 m between rows. The rows were established as the useful plot (9.6 m2), and one tuber was planted per site. This experiment was established in four potato-growing localities of the Department of Nariño (Marcillo et al., 2021). Sanitary and agronomic management was done according to the technical recommendations and requirements of the crop (ICA, 2011).

An additive main effects and multiplicative interaction (AMMI) model (Eq. 1) was used to determine the phenotypic stability. The AMMI model adjusts the analysis of variance and thus obtains the main effects of the genotype and the environment together with the analysis of main components, providing the genotypes with greater adaptation to each zone (Sharifi et al., 2017). This model analyzed the main additive effects of the potato genotypes and the localities through a conventional analysis of variance, followed by a description of the non-additive variance with a multivariate principal component analysis (PCA). The following model was used as described by Crossa et al. (1990):

Yij=μ+gi+ej+i=1kλkαikγjk+Rij (1)

where, Yij was yield of the i-th genotype of the j-th locality, μ was overall mean, gi was the mean of the i-th genotype minus the overall mean, ej was the mean of the j-th locality minus the overall mean, λk was the eigenvalue of the principal component (PCA)k, αikγjk was the PCA score of the k-nth axis of the i-th genotype and the j-th locality, and Rij was the residual of the model.

A biplot graph was generated from the first two principal components (PC1 and PC2). This plot represented the similarities of the potato genotypes and their interaction with the localities. The statistical analyses were conducted using the agricolae package in R v. 4.2 (R Core Team, 2008).

For the comparison of means between the treatments, significant differences were established according to De la Cruz-Lázaro et al. (2010) when the mean of the genotypes exceeded the overall mean plus one standard deviation (µ+σ) or twice the standard deviation (µ+2σ) (i.e., highly significant).

RESULTS AND DISCUSSION

The analysis of variance of the main and additive effects of the environments, genotypes, and GEI on yield was highly significant (P<0.001) (Tab. 3). The significance of the interaction justified conducting further analyses to determine the behavior of the genotypes across the localities, indicating an important variation across the genotypes (Maharana et al., 2017). Similar results were found by Cabrera (2019), who evaluated stability parameters in eight potato genotypes across six localities through a combined analysis of variance. This author reported significant results for environments, genotypes, and GEI, with yields of up to 22.09 t ha-1.

Table 3. AMMI analysis of potato (S. tuberosum var tuberosum) yield in four localities of the Department of Nariño. 

Source of variation df Sum of squares Mean square %SC P-value
Environments 3 101.335 33.778 42.43 ***
Repetitions 12 3.735 311 1.56 ***
Genotypes 20 33.047 1.652 13.84 ***
GenxEnv 60 36.987 616 15.49 ***
PC 1 22 13.618 619 73.64 ***
PC 2 20 3.372 169 18.22 **
PC 3 18 1.504 83 8.10 NS
Error 576 63.699 111 26.67

*** 0.001 P-value; ** 0.05 P-value; NS: Not significant.

Table 3 shows that the total variation of the experiment was largely explained by the environment (42.43% of the total sum of squares), indicating that yield was highly influenced by environmental factors. Furthermore, the results suggested that the localities were highly different. Environmental heterogeneity was determined mainly by differences in altitude, temperature, and soil nutrient availability in the field evaluations (Tab. 1). Temperature was one of the more important elements in the production behavior, in addition to the response of each genotype with the environment (Martín et al., 2017). Moreover, the phenotypic effects, expressed here as yield, were not controlled by a single gene but rather were the result of the interaction of many genes that generated a cascade of chemical reactions and were influenced by the environment (Habtamu et al., 2016).

On the other hand, the genotypes accounted for 13.84% of the variation, and the GEI explained 15.49% of the variance (Tab. 3).

These results differed from those reported by Iragaba (2014), Gedif and Yigzaw (2014), Muthoni et al. (2015) and Tirado et al. (2018), who found that the GEI accounts for a larger percentage of the variation than the environment and the genotypes, thus, explaining the behavior of yield in potato genotypes. Shahriari et al. (2018) studied the behavior of 30 potato genotypes in 10 different environments, finding that the environmental variation least explains the variability of the experiment, followed by the genotype and the GEI, which was attributed to the effect of the environment on yield.

Moreover, Hassanpanah (2011) evaluated the behavior of three potato varieties using the AMMI model, finding that yield was significantly different between environments and in response to the GEI. Lozano-Ramírez et al. (2015) stated that GEI occurs when genotypes behave differentially in response to the variation at each zone. In the absence of this interaction, yield results could be obtained from a single location and be considered universal data (Hallauer et al., 1988).

The comparison of means test (Tab. 4) showed the mean yields obtained in the four localities. Imues showed an overall mean of 31.89 t ha-1, where genotypes 68, 98, and 83 exceeded the overall mean (47.78, 47.22, 46.43 t ha-1, respectively). Additionally, in this locality, 90.5% of the genotypes exceeded the national yield (20.9 t ha-1), and mean yield of Nariño (22.2 t ha-1) (MADR, 2020). In Pasto, the average yield was 46.5 t ha-1 (Fig. 1), where genotype 83 (69.86 t ha-1), genotype 58 (68.29 t ha-1), and genotype 57 (68.24 t ha-1) showed outstanding yields that exceeded the overall mean for this locality (46.56 t ha-1) (Tab. 4). These yields were also higher than those found by Vásquez et al. (2021) and Vásquez et al. (2019), which ranged from 19.64 to 38.66 t ha-1 across eight genotypes obtained from five cycles of recurrent selection and six experimental genotypes from Baños Experimental Stations of Inca-INIA Cajamarca, respectively. In addition, Muñoz and Lucero (2008) evaluated the behavior of potatoes in the Department of Nariño with different levels of fertilization and found yields that varied between 10 t ha-1 and 13 t ha-1.

Table 4. Yields of 21 guata potato (S. tuberosum var tuberosum) genotypes evaluated in four localities of the Department of Nariño. 

Genotype Code Localities
Imues Pasto Pupiales Tangua
UdenarStGua20 20 29.22 38.01 52.27 18.86
UdenarStGua24 24 25.36 41.03 58.82 22.38
UdenarStGua31 31 20.69 54.57 49.07 25.49
UdenarStGua55 55 31.16 49.95 57.45 22.44
UdenarStGua57 57 39.82 68.24* 58.01 25.67
UdenarStGua58 58 30.27 68.29* 55.59 30.29*
UdenarStGua59 59 27.67 35.97 59.33 25.12
UdenarStGua61 61 34.79 43.59 58.66 23.47
UdenarStGua68 68 47.78* 45.12 60.97 30.33*
UdenarStGua71 71 33.25 50.66 45.17 24.83
UdenarStGua72 72 29.44 58.84 61.28 25.17
UdenarStGua78 78 47.55* 61.39 76.51** 28.5
UdenarStGua82 82 32.16 55.66 57.99 26.47
UdenarStGua83 83 46.43* 69.86* 51.64 25.92
UdenarStGua87 87 28.71 58.67 51.98 15.93
UdenarStGua89 89 33.51 36.61 52.35 27.14
UdenarStGua91 91 24.09 15.86 49.39 16.4
UdenarStGua93 93 8.33 16.19 53.5 33.96**
UdenarStGua94 94 29.21 39.35 58.67 25.35
UdenarStGua97 97 23.04 13.73 53.63 20.23
UdenarStGua98 98 47.22* 56.23 60.84 29.39*
µg 31.89 46.56 56.34 24.92
Σg 9.60 16.32 6.25 4.41
µg+σg 41.49 62.88 62.59 29.33
µg+2σg 51.08 79.20 68.84 33.75

*, ** = Significant at 0.05 and 0.01, respectively; µg = overall mean; σg = standard deviation.

Figure 1. Graphical representation of CP1 as a function of yield for 21 guata potato (S. tuberosum var. tuberosum) genotypes evaluated in four localities of the Department of Nariño. 

Pupiales showed the highest mean yield among the localities (56.34 t ha-1) (Tab. 4 and Fig. 1). This result indicated that it is the most favorable environment for the expression of yield in the different genotypes, which ranged between 45.17 t ha-1 (genotype 71) and 76.51 t ha-1 (genotype 78).

The yield reached by genotype 78 was similar to the one found by De la Cruz (2015)), who evaluated eight potato genotypes in Ecuador, obtaining a yield of 78.6 t ha-1 for the Superchola genotype in San Isidro. Furthermore, the yield of genotype 78 exceeded that reported by Roa et al. (2010) in two localities of Venezuela, who indicated yields ranging from 18.4 to 27.7 t ha-1. Possibly the genetic makeup of each genotype influences performance in the same way that the environmental variation does (Tirado et al., 2018). Overall, Pupiales exceeded the national yield by 169.6% and the departmental yield by 153.8%. These findings were attributed to the influence of soil nutrient availability, optimal temperatures for vegetative growth, precipitation, radiation, and low pressure from pests and diseases in this locality (Tirado-Lara et al., 2020).

Finally, Tangua showed the lowest overall mean among the localities, with a yield of 24.92 t ha-1 (Fig. 1). However, genotypes 93, 68, 58, and 98 showed significant means that ranged between 29.39 and 33.96 t ha-1 (Tab. 4). Probably, the altitude where the crop was established was at the lower limit of potato adaptation, which generated these low yields. De Almeida et al. (2015) maintained that temperature is one of the main variables for vegetative development and reproduction.

The results of the stability analysis are shown in table 3 and figure 1. The decomposition of the sum of squares of the GEI into principal components (PC) under the AMMI model demonstrated that the first two principal components were significant (P<0.05). The first principal component (PC1) explained 73.6% of the variation, and the second component (PC2) accounted for 18.2% of the variance. Altogether, PC1 and PC2 explained 91.8% of the inertia present in the interaction, which facilitated the analysis of the behavior of the experiment.

Table 5 shows the scalar values of the first two PCs obtained with the AMMI model, the mean of the genotypes, and the analyzed localities. The sign and magnitude of each genotype and locality in the components indicated the interaction and orientation of the interaction, which is shown in the biplot graph in figure 2. The genotypes with values close to zero for PC1 had superior yields, while those with values less than zero displayed low yields (Yan and Tinker, 2006). Values close to the origin in PC1 had higher magnitudes for the interaction, resulting in a lower GEI and more stability (Yan et al., 2000; Bassa et al., 2019). Stability is important in potato crops because it obtains progenitors that can be used in selection processes for improved potatoes (Affleck et al., 2008).

Table 5. Contribution of 21 potato (S. tuberosum var tuberosum) genotypes and four localities of the Department of Nariño to the first two principal components (PC) obtained with the AMMI model. 

Genotype Code Yield PC1 PC2
UdenarStGua20 20 34.59 -0.38 -0.61
UdenarStGua24 24 36.90 -0.57 0.55
UdenarStGua31 31 37.46 1.25 2.04
UdenarStGua55 55 40.25 0.44 0.07
UdenarStGua57 57 47.93 2.19 -0.10
UdenarStGua58 58 46.11 2.10 1.76
UdenarStGua59 59 37.02 -1.30 0.21
UdenarStGua61 61 40.13 -0.37 -0.68
UdenarStGua68 68 46.05 -0.73 -1.91
UdenarStGua71 71 38.47 1.02 -0.20
UdenarStGua72 72 43.68 1.06 1.06
UdenarStGua78 78 53.49 0.31 -1.06
UdenarStGua82 82 43.07 0.81 0.56
UdenarStGua83 83 48.46 2.66 -1.11
UdenarStGua87 87 38.82 2.02 0.18
UdenarStGua89 89 37.40 -0.99 -0.58
UdenarStGua91 91 26.44 -2.48 -1.14
UdenarStGua93 93 28.00 -3.53 2.96
UdenarStGua94 94 38.15 -0.91 0.15
UdenarStGua97 97 27.66 -3.13 -0.67
UdenarStGua98 98 48.42 0.53 -1.42
Imues 31.89 -0.18 -4.47
Pasto 46.56 6.29 1.38
Pupiales 56.34 -3.04 0.46
Tangua 29.20 -3.08 2.63
μg genotypes 39.93
μg environments 41.00

μg = overall mean

Figure 2. Biplot of tuber yield (t ha-1) in 21 potatoes (S. tuberosum var tuberosum) genotypes in four environments in the southern region of the Department of Nariño. 

The biplot graph was obtained using the PCs and represented the potato genotypes and environments (Fig. 2). Genotypes 55, 78, 24, 61, 20 and 98 had an IEG close to zero, indicating that these materials had stable behaviors across the environments. Tena et al. (2019) stated that a suitable genotype would have medium to high yields that are maintained across different environments. Tirado (2019) and Mohammadi et al. (2016) stated that new potato varieties should display wide stability in multiple environments and express high productive potential. In this study, genotype 78 (53.49 t ha-1) and genotype 98 (48.42 t ha-1) showed high stability and yields above the departmental and national means (39.93 t ha-1). Accordingly, these genotypes are new promising varieties in southern Colombia.

For the environments (Tab. 5), Pupiales and Imues showed values below zero in PC1 (-3.04 and -0.18, respectively). Pupiales presented yields above the general average, 41.0 t ha-1, and Imues did not exceed the general average. On the other hand, Tangua showed a negative value for PC1 (-3.08) but had a yield below the overall mean. Moreover, Pasto showed a positive value for PC1 (6.29) and a mean yield of 46.56 t ha-1 that exceeded the overall mean. Additionally, Pasto had the best adaptation in terms of genotype performance, as represented by the length of its vector in the biplot graph. (Fig. 2) (Yan and Tinker, 2006).

Genotypes 93, 31, 58, 83, 98, 68, 91, and 97 created a polygon of variation that suggested a greater effect of the interaction on their behavior across the localities. The environments had a positive or negative effect on these materials, largely on yield. Furthermore, when a genotype vector had the same direction as the environment vector, the interaction was positive, indicating favorable adaptation (Tirado et al., 2018).

The biplot graph (Fig. 2) and the mean yield per locality (Tab. 4) indicated that genotypes 97 and 91 had a positive interaction with Pupiales, with mean yields of 53.63 and 49.39 t ha-1, respectively. These values were higher than the overall mean, as we well as the departmental and national means. Moreover, genotype 93 had a positive interaction with Tangua and a significant mean yield of 33.96 t ha-1. Thus, genotypes 97, 91, and 93 are promising for these localities. The yield was attributed to the specific environmental conditions (Tirado et al., 2018).

Similarly, genotypes 57, 87, 58, and 83 showed positive interactions with Pasto. The genotypes exceeded the mean yield in this locality (46.56 t ha-1)(Tab. 5), indicated by significant mean yields ranging from 68.24 to 69.86 t ha-1 (Tab. 4). Finally, the location of genotypes 78 and 98 in the biplot graph (Fig. 2) indicated that they were better adapted to Imues, with yields above the mean of 31.89 t ha-1 for this locality (Tab. 5).

CONCLUSIONS

The broad variation and significant effect of the environment on yield caused diverse yields per plant material in each zone. Furthermore, this study showed a differential behavior of the potato genotypes according to the growing region, which were influenced by the altitude and soil conditions of each zone.

Genotypes UdenarStGua55, UdenarStGua78, UdenarStGua24, UdenarStGua61, UdenarStGua20 and UdenarStGua98 had a low GEI, which indicated that their yields were stable; therefore, these genotypes are promising for the evaluated areas.

BIBLIOGRAPHIC REFERENCES

Abbott, L. and S. Pistorale. 2011. Análisis de la estabilidad y adaptabilidad de caracteres de interés agronómico en genotipos selectos de cebadilla criolla (Bromus catharticus). Agriscientia 28(2), 109-117. Doi: 10.31047/1668.298x.v28.n2.2788 [ Links ]

Adebola, P.O., A.G. Shegro, S.M. Laurie, L.N. Zulu, and M. Pillay. 2013. Genotype x environment interaction and yield stability estimate of some sweet potato (Ipomoea batatas (L.) Lam) breeding lines in South Africa. J. Plant Breed. Crop Sci. 5(9), 182-186. Doi: 10.5897/JPBCS2013.0387 [ Links ]

Affleck, I., J.A. Sullivan, R. Tarn, and D.E. Falk. 2008. Genotype by environment interaction effect on yield and quality of potatoes. Can. J. Plant Sci. 88(6), 1099-1107. Doi: 10.4141/CJPS07207 [ Links ]

Agronet. 2019. Estadísticas agropecuarias. In: In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 ; consulted: september, 2021. [ Links ]

Andrade, M.I., A. Naico, J. Ricardo, R. Eyzaguirre, G.S. Makunde, R. Ortiz, and W. Grüneberg. 2016. Genotype x environment interaction and selection for drought adaptation in Sweet potato (Ipomoea batatas ENT#091;LENT#093; Lam) in Mozambique. Euphytica 209, 261-280. Doi: 10.1007/s10681-016-1684-4 [ Links ]

Bassa, D., F. Gurmu, and H. Mohammed. 2019. Comparison of univariate and multivariate models to analyze stability of common bean (Phaseolus vulgaris L.) genotypes in Ethiopia. Agrotechnology 8(2), 188. Doi: 10.35248/2168-9881.19.8.188 [ Links ]

Berdugo-Cely, J., R.I. Valbuena, E. Sánchez-Betancourt, L.S. Barrero, and R. Yockteng. 2017. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLOS ONE 12(3), e0173039. Doi: 10.1371/journal.pone.0173039 [ Links ]

Cabrera, H. 2019. Parámetros de estabilidad genético del rendimiento de ocho genotipos de papa (Solanum tuberosum L.), evaluados en seis localidades de la sierra norte del Perú. PhD thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Cajamarca, Cajamarca, Peru. [ Links ]

Calliope, S.R., M.O. Lobo, and N.C. Sammán. 2018. Biodiversity of Andean potatoes: Morphological, nutritional and functional characterization. Food Chem. 238, 42-50. Doi: 10.1016/j.foodchem.2016.12.074 [ Links ]

Caro Castro, J., C. Mateo Tuesta, J. Cisneros Mosco, N. Galindo Cabello, and J. León Quispe. 2019. Aislamiento y selección de actinomicetos rizosféricos con actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena). Ecol. Aplic. 18(2), 101-109. Doi: 10.21704/rea.v18i2.1329 [ Links ]

Cooper, M. and D.E. Byth. 1996. Understanding plant adaptation to achieve systematic applied crop improvement: A fundamental challenge. pp. 5-23. In: Cooper, M. and G.L Hammer (eds.). Plant adaptation and crop improvement. CAB International and IRRI, Wallingford, UK. [ Links ]

Crossa, J., H.G. Gauch Jr., and R.W. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Breed. Genet. Cytol. 30(3), 493-500. Doi: 10.2135/cropsci1990.0011183X003000030003x [ Links ]

de Almeida, F.M., G.J. Gonçalves Pereira, J. Arzuaga Sánchez, W. Torres de la Noval, J.A. Cabrera Rodríguez, and A. Hernández Jiménez. 2015. Principales problemáticas que afectan el desarrollo del cultivo de la papa (Solanum tuberosum L.) en diferentes municipios de la provincia Huambo, Angola. Cult. Trop. 36(4), 100-107. [ Links ]

De la Cruz, C. 2015. Estudio de adaptación de ocho genotipos de papa (Solanum tuberosum) con características de agroindustria en dos localidades de la Sierra Norte. Undergraduate thesis. Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito. [ Links ]

De la Cruz-Lázaro, E., G. Castañón-Ñajera, N.P. Brito-Manzano, A. Gómez-Vázquez, V. Robledo-Torres, and R.J. Lozano del Río. 2010. Heterosis and combining ability of tropical maize populations. Int. J. Exp. Bot. 79, 11-17. Doi: 10.32604/phyton.2010.79.011 [ Links ]

Elias, A.A., K.R. Robbins, R.W. Doerge, and M.R. Tuinstra. 2016. Half a century of studying genotype x environment interactions in plant breeding experiments. Crop Sci. 56(5), 2090-2105. Doi: 10.2135/cropsci2015.01.0061 [ Links ]

Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46(4), 1488-1500. Doi: 10.2135/cropsci2005.07-0193 [ Links ]

Gedif, M. and D. Yigzaw. 2014. Genotype by environment interaction analysis for tuber yield of potato (Solanum tuberosum L.) using a GGE biplot method in Amhara Region, Ethiopia. Agric. Sci. 5(4), 239-249. Doi: 10.4236/as.2014.54027 [ Links ]

Ghislain, M., D. Andrade, F. Rodriguez, R.J. Hijmans, and D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor. Appl. Genet. 113(8), 1515-1527. Doi: 10.1007/s00122-006-0399-7 [ Links ]

Gil-Rivero, E., E. Lopéz-Médina, J. Mostacero-León, and A.J. De la Cruz-Castillo. 2019. Papas nativas con potencial antioxidante, cultivadas en el norte del Perú. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 18(3), 289-324. [ Links ]

Habtamu, G., M. Wahassu, and S. Beneberu. 2016. Evaluation of processing attributes of potato (Solanum tuberosum L.) varieties in Easter Ethiopia. Greener J. Plant Breed. Crop Sci. 4(2), 37-48. Doi: 10.15580/GJPBCS.2016.1.102315148 [ Links ]

Hallauer, A.R., W.A. Russell, and K.R. Lamkey. 1988. Corn breeding. pp. 463-564. In: Sprague, G.F. and J.W. Dudley (eds.). Corn and corn improvement. Vol. 18. American Society of Agronomy, Madison, WI. Doi: 10.2134/agronmonogr18.3ed.c8 [ Links ]

Hassanpanah, D. 2011. Analysis of G × E interaction using the additive main effects and multiplicative interaction (AMMI) in potato cultivars. Afr. J. Biotechnol. 10(2), 154-158. [ Links ]

Haynes, K.G., D.M. Gergela, C.M. Hutchinson, G.C. Yencho, M.E. Clough, M.R. Henninger, D.E. Halseth, E. Sandsted, G.A. Porter, and P.C. Ocaya. 2012. Early generation selection at multiple locations may identify potato parents that produce more widely adapted progeny. Euphytica 186(2), 573-583. Doi: 10.1007/s10681-012-0685-1 [ Links ]

ICA, Instituto Colombiano Agropecuario. 2011. Manejo fitosanitario del cultivo de la papa (Solanum tuberosum subsp. Andigena y S. phureja) - Medidas para la temporada invernal. Bogota. [ Links ]

Iragaba, P. 2014. Inheritance and stability of earliness in potato (Solanum tuberosumL.). MSc thesis. College of Postgraduates, Makerere University, Kampala. [ Links ]

Khoury, C.K., H.A. Achicanoy, A.D. Bjorkman, C. Navarro-Racines, L. Guarino, X. Flores-Palacios, J.M.M. Engels, J.H. Wiersema, H. Dempewolf, S. Sotelo, J. Ramírez-Villegas, N.P. Castañeda-Álvarez, C. Fowler, A. Jarvis, L.H. Rieseberg, and P.C. Struik. 2016. Origins of food crops connect countries worldwide. Proc. Royal Soc. B: Biol. Sci. 283(1832), 18-32. Doi: 10.1098/rspb.2016.0792 [ Links ]

Lozano-Ramírez, Á., A. Santacruz-Varela, F. San-Vicente-García, J. Crossa, J. Burgueño, and J.D. Molina-Galán. 2015. Modelación de la interacción genotipo x ambiente en rendimiento de híbridos de maíz blanco en ambientes múltiples. Rev. Fitotec. Mex. 38(4), 337-347. Doi: 10.35196/rfm.2015.4.337 [ Links ]

Lule, D.D., M. Fetene, S. de Villiers, and K. Tesfaye. 2014. Additive main effects and multiplicative interactions (AMMI) and genotype by environment interaction (GGE) biplot analyses aid selection of high yielding and adapted finger millet varieties. J. Appl. Biosci. 76(3), 6291-6303. Doi: 10.4314/jab.v76i1.1 [ Links ]

MADR, Ministerio de Agricultura y Desarrollo Rural. 2020. Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales, Bogota. [ Links ]

Maharana, J., C.M. Panda, and P. Jakhar. 2017. Genotype x environment interaction and stability analysis of kharif potato in Koraput Region of Odisha. Int. J. Curr. Microbiol. Appl. Sci. 6(5), 1159-1166. Doi: 10.20546/ijcmas.2017.605.126 [ Links ]

Marcillo Paguay, C.A., C.A. Benavides Cardona, C. Guatusmal Gelpud, S.N. Yandar Erazo, and J.V. Romero. 2021. Zona papera nariñense: una mirada a los ambientes productivos. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Colombia. Doi: 10.21930/agrosavia.nbook.7404777 [ Links ]

Márquez-Vasallo, Y., J.L. Salomón-Díaz, and R. Acosta-Roca. 2020. Análisis de la interacción genotipo ambiente en el cultivo de la papa (Solanum tuberosum L.). Cul. Trop. 41(1), 10. [ Links ]

Martín Martín, R. and E. Jerez Mompie. 2017. Efecto de las temperaturas en el rendimiento de la papa (Solanum tuberosum L.) variedad Romano. Cult. Trop. 38(1), 75-80. [ Links ]

Mohammadi, M., T. Hosseinpour, M. Armion, H. Khanzadeh, and H. Ghojogh. 2016. Analysis of genotype, environment and genotype x environment interaction in bread wheat genotypes using GGE biplot. Agric. Commun. 4(3), 1-8. [ Links ]

Mohammed, W. 2017. Genotype x environment interaction, stability and co-heritability of tuber internal quality traits in potato (Solanum tuberosum L.) cultivars in Ethiopia. Afr. J. Food Agric. Nutr. Dev. 17(4), 12930-12952. Doi: 10.18697/ajfand.80.16245 [ Links ]

Muthoni, J., H. Shimelis, and R. Melis. 2015. Genotype x environment interaction and stability of potato tuber yield and bacterial wilt resistance in Kenya. Am. J. Potato Res. 92, 367-378. Doi: 10.1007/s12230-015-9442-z [ Links ]

Muñoz, L.A. and A.M. Lucero. 2008. Efecto de la fertilización orgánica en el cultivo de papa criolla Solanum phureja. Agron. Colomb. 26(2), 340-346. [ Links ]

Negash, A.W., H. Mwambi, T. Zewotir, and G. Taye. 2013. Additive main effects and multiplicative interactions model (AMMI) and genotype main effect and genotype by environment interaction (GGE) biplot analysis of multi environmental wheat variety trials. Afr. J. Agric. Res. 8(12), 1033-1040. Doi: 10.5897/AJAR2012.6648 [ Links ]

Picardi, L.A. 2018. El mejoramiento vegetal en estos días. In: Proc. Comunicaciones Libres: Mejoramiento Genético Vegetal. J. Basic Appl. Genet. 29(Suppl. l), 31. [ Links ]

Porras Rodríguez, P.D. and C.A. Herrera Heredia. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Corpoica, Mosquera, Colombia. Doi: 10.21930/978-958-740-210-0 [ Links ]

R Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. [ Links ]

Roa, S., C. Barboza, and A. Zambrano. 2010. Estabilidad del rendimiento de variedades de papa (Solanum tuberosum L.) para procesamiento industrial en el estado Táchira, Venezuela. Rev. Fac. Agron. (LUZ) 27(2), 173-192. [ Links ]

Salcedo, S. and L. Guzmán (eds.). 2014. Agricultura familiar en América Latina y el Caribe: Recomendaciones de política. FAO, Santiago. [ Links ]

Salomón, J.L., J.G. Castillo, J.A. Arzuaga, W. Torres, A. Caballero, M. Varela, and V.M. Hernández Betancourt. 2015. Analysis of progeny-environment interaction with seedling tubers of true potato seed (Solanum tuberosum L.) in Cuba. Cult. Trop. 36(2), 83-89. [ Links ]

Sepúlveda-Cano, P.A., A.H. Smith-Pardo, and R.A. Hoyos S. 2017. Effect of the spatial arrangement of agroecosystem on bee (Hymenoptera: Apoidea) diversity in potato (Solanum tuberosum) crops of Antioquia, Colombia. Rev. Colomb. Entomol. 43(1), 55-63. Doi: 10.25100/socolen.v43i1.6650 [ Links ]

Shahriari, Z., B. Heidari, and A. Dadkhodaie. 2018. Dissection of genotype x environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses. PLOS ONE 13(5), e0196095. Doi: 10.1371/journal.pone.0196095 [ Links ]

Sharifi, P., H. Aminpanah, R. Erfani, A. Mohaddesi, and A. Abbasian. 2017. Evaluation of genotype x environment interaction in rice based on AMMI model in Iran. Rice Sci. 24(3), 173-180. Doi: 10.1016/j.rsci.2017.02.001 [ Links ]

Sleper, D.A. and J.M. Poehlman. 2006. Breeding field crops. 5th ed. Blackwell Publishing, Ames, IA. [ Links ]

Tena, E., F. Goshu, H. Mohamad, M. Tesfa, D. Tesfaye, and A. Seife. 2019. Genotype x environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia. Cogent Food Agric. 5(1), 1651925. Doi: 10.1080/23311932.2019.1651925 [ Links ]

Tirado Malaver, R.H. 2019. Sustentabilidad y desempeño agronómico de genotipos de papa (Solanum tuberosum L.) en la provincia de Cutervo, Cajamarca, Perú. PhD thesis. Escuela de Posgrado. Universidad Nacional Agraria La Molina. Lima. [ Links ]

Tirado-Lara, R., R. Tirado-Malaver, E. Mayta-Huatuco, and W. Amoros-Briones. 2020. Identificación de clones de papa con pulpa pigmentada de alto rendimiento comercial y mejor calidad de fritura: Estabilidad y análisis multivariado de la interacción genotipo-ambiente. Sci. Agropec. 11(3), 323-334. Doi: 10.17268/sci.agropecu.2020.03.04 [ Links ]

Tirado M., R., R. Tirado L., and J. Mendoza C. 2018. Interacción genotipo x ambiente en rendimiento de papa (Solanum tuberosum L.) con pulpa pigmentada en Cutervo, Perú. Chil. J. Agric. Anim. Sci. 34(3), 191-198. Doi: 10.4067/S0719-38902018005000502 [ Links ]

Thiyagu, D., M.Y. Rafii, T.M.M. Mahmud, M.A. Latif, M.A. Malek, and G. Sentoor. 2013. Genetic variability of sweet potato (Ipomoea batatas Lam.) genotypes selected for vegetable use. J. Food Agric. Environ. 11(2), 340-344. [ Links ]

Vargas Hernández, M. and J. Crossa. 2000. El análisis AMMI y la gráfica del biplot en SAS. CIMMYT, México, DF. [ Links ]

Vargas, M., J. Crossa, F.A. Van Eeuwijk, M.E. Ramírez, and K. Sayre. 1999. Using partial least squares regression, factorial regression, and AMMI models for interpreting genotype x environment interaction. Crop Sci. 39(4), 955-967. Doi: 10.2135/cropsci1999.0011183X003900040002x [ Links ]

Vásquez A., V., H.A. Cabrera H., L.A. Jiménez D., and A. Colunche. 2019. Estabilidad del rendimiento de genotipos de papa (Solanum tuberosum L.). Ecol. Aplic. 18(1), 59-65. Doi: 10.21704/rea.v18i1.1307 [ Links ]

Vásquez A., V., P. Huerta F., H. Cabrera H., and L. Jiménez D. 2021. Interacción genotipo-ambiente en el rendimiento de genotipos de papa. Rev. Mex. Cienc. Agríc. 12(2), 175-182. [ Links ]

Yahaya, S.U., A.M. Saad, S.G. Mohammed, and S.O. Afuape. 2015. Evaluating the performance of improved sweet potato (Ipomoea batatas L. Lam) advanced lines in Kano, Sudan savanna of Nigeria. Int. J. Agron. Agric. Res. 7(4), 52-60. [ Links ]

Yan, W. and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 86(3), 623-645. Doi: 10.4141/P05-169 [ Links ]

Yan, W., L.A. Hunt, Q. Sheng, and Z. Szlavnics. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40(3), 597-605. Doi: 10.2135/cropsci2000.403597x [ Links ]

Received: May 21, 2021; Revised: August 02, 2021; Accepted: October 26, 2021

2 Corresponding author. deduartea@unal.edu.co

Conflict of interests:

This manuscript was prepared and reviewed with the participation of the authors, who declare that there exists no conflict of interest that puts at risk the validity of the presented results.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License