SciELO - Scientific Electronic Library Online

 
vol.20 issue2Optimizing sustainability in the specialty coffee supply chainThe fictional emergence of the emerging middle class in Colombia in social novels author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Entramado

Print version ISSN 1900-3803On-line version ISSN 2539-0279

Entramado vol.20 no.2 Cali July/Dec. 2024  Epub Oct 15, 2024

https://doi.org/10.18041/1900-3803/entramado.2.10566 

Artículos de reflexión

Methodological construction for the analysis of social phenomena: case of entrepreneurial decisions in university students*

Construção metodológica para a análise de fenômenos sociais: o caso das decisões empreendedoras de estudantes universitários

José Londoño-Cardozo1 
http://orcid.org/0000-0002-5739-1191

Elkin Fabriany Pineda-Henao2 
http://orcid.org/0000-0002-0168-1739

1Profesor tiempo completo Corporación Universitaria Minuto de Dios - UNIMINUTO, Cali - Colombia jodlondonoca@unal.edu.co

2Estudiante de Doctorado en Ciencias de la Administración de la Universidad Nacional Autónoma de México efpinedah@comunidad.unam.mx


ABSTRACT

This document aims to reflect on a social research method that allows for the examination of complex social phenomena through the operationalization of some of its characteristics. It is not a traditional article that presents and analyzes results; rather its nature is reflective, centering on the presentation and justification of a methodology. To this end, the epistemological and ontological foundations and difficulties of traditional research methodologies are discussed. Additionally the foundations of the proposed approach are presented, and a case application is exposed, demonstrating the convergence of perspectives in a single study. The document concludes that this method can be essential for holistic, transdisciplinary, and interdisciplinary methodological approaches where different perspectives are required for the same phenomenon.

KEYWORDS: Operationalization of qualitative data; research dimensions; research methodology; entrepreneurial decision-making

RESUMO

O objetivo deste artigo é refletir sobre um método de pesquisa social que nos permite examinar fenômenos sociais complexos, operacionalizando algumas de suas características. Não se trata de um artigo tradicional que apresenta e analisa resultados, mas sim de um artigo de reflexão, baseado na apresentação e na justificativa de uma metodologia. Para tanto, são discutidos os fundamentos epistemológicos e ontológicos e as dificuldades das metodologias tradicionais de pesquisa. Além disso, são apresentados os fundamentos da proposta e um caso de aplicação que nos permite ver a conjunção de posições em um único estudo. O artigo conclui que esse método pode ser essencial para abordagens metodológicas holísticas, transdisciplinares e interdisciplinares em que são necessárias diferentes perspectivas sobre o mesmo fenômeno.

PALAVRAS-CHAVE: Operacionalização de dados qualitativos; dimensões de pesquisa; metodologia de pesquisa; decisão de empreender; metodologia de pesquisa; metodologia de pesquisa

RESUMEN

Este documento tiene como objetivo reflexionar acerca de un método de investigación social que permite examinar fenómenos sociales complejos a partir de la operativización de algunas de sus características. No se trata de un artículo tradicional que presente y analice resultados, sino que su naturaleza es de reflexión, alrededor de la presentación y justificación de una metodología. Para ello, se discuten los fundamentos y dificultades epistemológicas y ontológicas de las metodologías tradicionales de investigación. Adicionalmente, se presentan los fundamentos de la propuesta y se expone un caso de aplicación que permite ver la conjunción de posturas en un solo estudio. El documento concluye que este método puede ser esencial para enfoques metodológicos holísticos, trans e interdisciplinarios donde se requieran distintas miradas para un mismo fenómeno.

PALABRAS CLAVE: Operativización de datos cualitativos; dimensiones de investigación; metodología de la investigación; decisión de emprender

1. Introduction

Social reality is constructed from the collective imagination of all individuals (Searle, 1997). In this process, a social order is created, manifested in social norms and institutions that constrain action (North, 2006; Williamson, 1989), becoming an extension of human reason itself (Castoriadis, 2013). However, considering that people can change their minds, begin to think differently, and include the dynamics of institutional change, it becomes evident that there are no aspects that can be determined as exact and immutable, and the image of social order becomes more complex. This distinction sets social sciences apart from exact sciences and, consequently, differentiates their research methods (Bunge, 1999; 2004).

In the exact sciences, there are techniques, measurements, and concepts that are constant and can be applied in measurements regardless of context, location, or form. The research methods in the exact sciences are standardized because the nature of their objects of study allows it (Bunge, 1999; 2004). In social sciences, regarding social reality and human behavior, this is a challenge. Therefore, social research methods are often questioned by some researchers for an alleged lack of objectivity, due to their variability and wide range of techniques and methods (Lozano Ardila, 2017; Martínez Ruíz and Benítez Ontiveros, 2016). However, those who make this critique often overlook that these characteristics are inherited from the very object of study. Consequently, observing social phenomena and individuals themselves is a complex process.

This complexity prompts a view that qualitative and quantitative aspects should be seen as tools of knowledge that can be employed as an amalgam according to the needs of the research. It encourages the gathering of different perspectives and studies that fit within what could be considered holistic, transdisciplinary, and interdisciplinary methodologies. It views research partly as an art without predetermined rules (Feyerabend, 1975).

Given this context, this document reflects on a social research method that allows for the examination of such phenomena in a way that some of the characteristics that are difficult to measure or quantify can be operationalized. Therefore, the purpose of this writing is not that of a traditional research article aiming to present the analysis of data through a given methodology, but rather to present and reflect on a method, using supportive elements - such as exemplifications of its use - for greater justification. This method emerged as part of a research training exercise in undergraduate programs in administrative sciences to understand part of the heuristic process in research methodologies, and thus it is presented as a useful framework for such training.

To fulfill this purpose, a practical case will be used as an example. It is reiterated that the practical case does not serve as a traditional framework of results and analysis, but solely as a means to illustrate the use of the method. The practical case to be exemplified refers to the reasons that motivate university students to undertake or not undertake entrepreneurial activities. This methodological exercise was carried out as part of the research project titled "Análisis de las variables características de propensión al emprendimiento de los estudiantes UNIMINUTO de la rectoría Suroccidente - RSO".

Accordingly, the document initially presents a contextual discussion on qualitative and quantitative approaches in the research of social phenomena. Then, the theoretical foundations of the process of operationalizing qualitative data are presented as the central framework for reflecting on this methodological proposal. Subsequently, the practical case related to the entrepreneurial decisions of students from a higher education institution in Colombia is developed, where the procedures of operationalizing qualitative data are applied, accompanied by their respective theoretical reflections.

On Qualitative and Quantitative Approaches to Social Phenomena

A significant part of the difficulty in addressing some of the diverse objects of study in the social sciences lies in the ontological complexity of the phenomena or facts from which these objects of study are constructed (Bourdieu, Chamboredon and Passeron, 2002). This complexity has sparked a broad methodological debate in the social sciences, which includes questioning the type of knowledge that this science should seek (Mardones, 2015). While this methodological discussion has many facets and versions, it is often presented through two classical stances that facilitate its understanding.

The first stance asserts that a certain methodological monism of the sciences should be maintained, so that social and natural sciences share at least some methodological elements, where quantitative methodologies are favored. According to Mardones (2015), these methodologies derive from a methodological tradition he calls the Galilean tradition, whose goal is to find the efficient causes - or explanations -of phenomena. The second stance argues that the ontological basis of natural and social phenomena is so distinct that there cannot be a universal set of methodological elements that encompasses both social and natural sciences. Therefore, for the first type of sciences - social sciences - qualitative methodologies should be favored for ontological coherence. These methodologies in the social sciences stem from a methodological tradition that Mardones (2015) terms the Aristotelian tradition, whose purpose is to find the final causes - or understandings - of social phenomena.

The intriguing aspect of this discussion, which is attractive for the present work, is that this methodological problem does not necessarily have to be seen as an epistemic barrier preventing the transition between qualitative and quantitative approaches in the social sciences. That is, while it is indeed assumed that natural and social phenomena possess different ontological bases - a matter that, however, heavily depends on the intellectual orientation of the researchers - this does not mean that social phenomena cannot be approached qualitatively or quantitatively. Reality is not ontologically qualitative or quantitative - qualitative and quantitative aspects are not two facets of the world - but rather, qualitative and quantitative approaches are epistemological ways of approaching phenomena in research (Díez and Moulines, 1997).

Accordingly, the objects of study in social phenomena can be approached both qualitatively and quantitatively. Depending on the epistemic objectives pursued and the intellectual orientations of the researchers, one approach or the other will be employed, resulting in types of data with different natures that are susceptible to analysis. In fact, certain research problems address social phenomena of such complexity that a situation might arise where it becomes necessary to approach them both qualitatively and quantitatively, to varying degrees and forms, as the case may require.

The Operationalization of Qualitative Data

As outlined in the introduction, the purpose of this work is to present and reflect on a methodology, not to present a methodology followed by data analysis. Therefore, the aim of this section is to introduce the proposed methodological framework. In this context and considering the synthesis of the previous discussion between qualitative and quantitative approaches, it is epistemologically conceivable to propose methods to transform qualitative data types so that they can be measured. For this, it is necessary to understand that some research, due to the nature of their objectives or research problems, or the requirements of some applied studies, needs measurable elements.

The foundation for this refers to what Cea D'Ancona discussed regarding the process of concept operationalization. According to this author, the notion of operationalization originates from the natural sciences and refers to the process in which measurements are assigned to concepts (Cea D'Ancona, 2001). This process is considered an intermediate methodological phase where, from concepts, "empirical variables or indicators" are established for respective contrastation with reality (Cea D'Ancona 2001, p. 113).

This method can be applied to the study of social phenomena, considering the points already mentioned. Firstly, social phenomena, like any other phenomenon, can be subsumed into concepts (Díez and Moulines, 1997). Then, depending on the complexity of the social phenomenon studied, these concepts are often broken down into dimensions for respective analysis. Such breakdown into dimensions also depends on the different emphases of the disciplines addressing the social phenomenon. Each dimension of the social phenomenon studied can be disaggregated into types of qualitative data, which are used to gather information about aspects of reality related to that dimension of the phenomenon. By their nature, these types of qualitative data do not provide measurable information, leading to the process of operationalization, in which a way to quantitatively interpret the qualitative data is sought, giving it a numerical value. However, various difficulties associated with the complexity of the phenomenon and the limitations of associated abstraction processes come into play in this process.

To illustrate this, consider the study of complex social phenomena like decision-making. Studying some decisions made by individuals is complex due to the vagueness of the reasons constraining this action (Sánchez Sánchez, 2007). Like other social life phenomena, "[...] decisions are abstract constructs and, therefore, not directly observable" (Cea D'Ancona 2001, p. 115). For this reason, measuring why a person makes a decision about something requires breaking down this phenomenon by conceptualizing it into dimensions (Arenas-García 2021; González Blasco, 1986). This action involves identifying concepts that comprise the phenomenon, generally known as factors (González Blasco, 1986). However, González Blasco mentioned that "by performing this operation, one gains in precision but loses in richness, as generally, no matter how many dimensions are considered, all the aspects that a complex notion entails are never taken" (1986, p. 213).

Social facts are complex and difficult to observe broadly (González Blasco, 1986). Therefore, González Blasco mentioned that an agreement should be reached on the number of dimensions to be used for measuring the phenomenon in such a way that its understanding, operationalization, and complete delimitation are not hindered (1986). To determine the quality, quantity, and relevance of the dimensions, approximations and validity tests must be executed (González Blasco, 1986; Rodríguez Medina et al., 2021). Regarding this, González Blasco considered that:

There are no theoretical rules to determine the dimensions to be considered in a concept. In many cases, it is the intuition and experience of the researcher that sets the limits of the most representative dimensions of a concept, either by analyzing the concept itself or by empirically deducing these dimensions; applying the results of previous studies. (González Blasco, 1986, p. 213)

Similarly, some authors suggest validating the dimensions found through expert contrastation (Escobar-Pérez and Cuervo-Martínez, 2008; Rodríguez Medina et al., 2021). However, this step is often used methodologically more to identify the validity of the instruments (Escobar-Pérez and Cuervo-Martínez, 2008). For this purpose, literature reviews or results from empirical observations are more commonly used (Escobar-Pérez and Cuervo-Martínez, 2008; González Blasco, 1986).

While these dimensions are parts of a concept, they correspond to qualitative properties that allow the classification of individuals or observed social phenomena into a limited number of categories (López-Roldán, 1996). Procedurally, dimensions correspond to categories that can be identified in the individual or social phenomenon. The observer is an individual or group, and each observation or finding is a reflection of the observed phenomenon grouped into symbolic representations or variables (González Blasco, 1986). These symbolic representations can be understood as socio-semiotic codes from the hermeneutics of cultural analysis (González Rojas, 2016). These variables can store interval, nominal, and ordinal data, making the dimensions of these same types (González Blasco, 1986; Dettori and Norvell, 2018), Figure 1. For the first type of data, intervals are understood as discrete data grouped into scales, indivisible, with no absolute zero. The scale is arbitrarily selected to organize data, but all maintain an equivalence in the unit of measure (Dagnino, 2014; Vargas Franco, 2007).

Source: Own elaboration based on González Blasco (1986)

Figure 1 Types of Qualitative Data Susceptible to Measurement 

The following data are nominal. These, in turn, represent qualities usually referred to as labels. Generally, these labels do not possess a usual numerical meaning; they are non-metric and it is impossible to indicate which category is better than another (Vargas Franco, 2007; Dettori and Norvell, 2018). Additionally, they are often dichotomous, taking only two values, such as alive or dead (Dagnino, 2014; Kara, 2023). Dagnino considered that this

is the weakest level of measurement. Numbers or other symbols are simply used to classify an object, person, or characteristic. In a nominal scale, the operation involves dividing a given class into a set of mutually exclusive subclasses. The only relationship involved is equivalence, symbolized by the sign =, or its absence, by the symbol (2014, p. 110)

The last type of data, ordinal, accounts for a quality and not a quantity. Like nominal data, numbers are usually understood as labels. However, ordinal data differ from nominal data in that the labels must retain the characteristics of the numerical system, represent the characteristics of the object being measured, and generally have a logical valuation (Vargas Franco. 2007). Moreover, these data must a) include at least three possible values and b) have a total limit of options (Dagnino, 2014). The most commonly used form of ordinal data is the Likert scale (Maldonado Manzano, Manaces Esaud and Piñas Piñas, 2022; Lalla, 2017).

Thus, these three types of data comprise dimensions that are, in turn, composed of variables or groups of variables. The number of variables, as well as the number of dimensions, depends on the type of data to be measured, the phenomenon, and the contrastation made between the two. This process usually identifies the aspects to be observed (Merton, 2002) which, in this type of research, are generally considered indicators (González Blasco, 1986).

For González Blasco, indicators can be understood "[...] as measurement instruments that concretize observations and make the dimensions of the considered concept quantitatively measurable" (1986, p. 217). Indicators can be understood as operational terms (Cea D'Ancona, 2001 ). Expressing dimensions in terms of one or more indicators achieves a beneficial concretion, as it allows for numerical manipulation and its relation to other dimensions. However, this concretion results in the loss of part of the conceptual richness of the observed phenomenon (González Blasco, 1986). Now, according to González Blasco, among all the characteristics of indicators (see Figure 2), there are two that he considered essential: "a) being related to the concept or dimension they intend to indicate; and b) being a numerical, quantitative expression of the dimension they reflect" (1986, p. 217). In addition to the above characteristics, this author mentions that other secondary characteristics specific to the dimension to be measured must be considered.

Source: Own elaboration based on González Blasco (1986) and Cea D'Ancona (2001)

Figure 2 Characteristics of Indicators 

For the development of social research indicators, there are no guiding patterns that guarantee objectivity as with economic indicators. There is no standard, but it is possible to refer to sources of information such as previous research on the studied field. This gives some validity to the indicators as they have been sufficiently contrasted (González Blasco, 1986).

Once dimensions and indicators are identified, the operationalization of information is posible (Cea D'Ancona, 2001; López-Roldán and Fachelli, 2015). For this, it is recommended to formulate guiding questions that direct the sense to be given to the analysis of the phenomenon to be observed (Cea D'Ancona, 2001; López-Roldán and Fachelli, 2015). This action further delimits the number of indicators for each dimension, in line with what González Blasco (1986) proposed. Below is a general schema for the operationalization of qualitative variables that can be applied for a general analysis of this type,Table 1.

Table 1 Example of a Table for Operationalizing Variables 

Source: The authors

Similarly, Salcedo Serna considers that this method allows for the formulation of guiding questions whose answers can be considered research hypotheses (Salcedo Serna, 2021), see Table 1. It is also possible to identify terms or key criteria that facilitate the observation process. These key criteria arise from the question, or the identification of the possible content subsumed in the dimension and the indicator. The use of key criteria is optional and is often employed in some research, particularly based on discourse analysis.

Practical Case of Operationalizing Qualitative Data

As outlined in the introduction, this practical case does not aim to present results or analysis of results from a traditional research article but serves as an argumentative and supportive element to illustrate the methodology being presented and reflected upon. This practical case was derived from a research training exercise, assuming that, in general, the proposed methodology can be used for students to reflect on the qualitative and quantitative aspects, overcoming orthodox discussions around research.

Regarding the practical case, it involves a study exercise on entrepreneurial decisions. Analyzing the decisions of groups of people is complex due to the various options each of their members can have individually. For the case of the decision to undertake entrepreneurship, it is possible to identify several deciding factors such as: a) tolerance to uncertainty, b) social conditions, c) risk aversion, d) personal characteristics, e) technical or practical knowledge of an activity, f) political factors, g) educational level or influence of education, among others that may positively or negatively influence a person's decision (Lemos Bernal and Londoño-Cardozo, 2024; Ramírez Maya, Tierradentro and Londoño-Cardozo, 2023). Therefore, to identify the factors that could influence the decisions made by a group of university students in Colombia, it was necessary to apply the method of operationalizing variables presented in the previous section. This procedure made it possible to identify the dimensions and indicators that could be assessed in the population under study.

The operationalization of variables in this study was carried out through a systematic literature review. For this review, keywords such as 1) sociodemographic factors, 2) risk aversion, 3) decision making, 4) entrepreneurship, 5) entrepreneurial intentions, 6) entrepreneurial attributes, among others, were used. All types of documents suitable for a systematic literature review according to García Molina and Chicaíza Becerra (2011) and corresponding to the period 2010 - 2022 were considered valid. Additionally, all criteria for a systematic literature review in social sciences outlined by Chicaíza-Becerra et al., (2017) were followed.

All this information was synthesized into a bibliographic matrix. This allowed the identification of dimensions that can be considered to analyze university students' decisions about becoming entrepreneurs or not. In general, four dimensions were identified: a) education, b) life experiences, c) socioeconomic aspects, and d) psychological factors. These dimensions are described in more detail below.

The first dimension to consider is the level of education, which significantly influences the decision to undertake entrepreneurship (Rocha Jácome and Giraldo Gómez, 2015; Torres-Ortega and Campos, 2021). This impact manifests through both the individual's prior training and educational sensitization processes. It has been established that a higher educational level increases the probability of starting an entrepreneurial venture (Villarreal-Álvarez and Roque-Hernández, 2022), especially when possessing prior technical knowledge before university education (Salcedo Serna, Londoño-Cardozo, and Gaitán Vera, 2021). However, a higher educational level can also lead to the decision not to undertake entrepreneurship, opting instead for academia, research, or high-ranking public or private positions (Villarreal-Álvarez and Roque-Hernández, 2022; León Mendoza, 2017). Thus, the educational level emerges as a crucial dimension in the decision to undertake entrepreneurship.

For the case of Colombia, this dimension can be subdivided into two indicators. The first refers to the educational level in the country, classified as: a) university education, b) secondary education, c) primary education, or d) no edu cation (Ministerio de Educación Nacional, 2011). Estrin, Mickiewicz and Stephan (2016) and Johansson (2000) highlight the importance of these educational levels. The second indicator suggests that university education has higher added value if it is technical, technological, or professional (Orozco Castro and Chavarro-Bohórquez, 2008; Schlaegel and Koenig, 2014; Villarreal-Álvarez and Roque-Hernández, 2022).

The second dimension includes the life experiences of the students (Hossain, 2021; León Mendoza, 2017), with indicators such as: i) accumulated work experience (Poschke, 2013a; 2013b; Serrano Orellana, Pacheco Molina and Barriga Arizabala, 2017), where entrepreneurship arises from the desire to solve a current need using previous knowledge (Serrano Orellana, Pacheco Molina and Barriga Arizabala, 2017; Salcedo Serna, Londoño-Cardozo and Gaitán Vera, 2021); ii) success stories influenced by examples of family members, acquaintances, or friends who undertook entrepreneurial ventures (Chen, Greene and Crick, 1998; Krueger, Reilly and Carsrud, 2000) iii) migratory status, where crises force migration, applying previous knowledge in new contexts (Vinogradov and Kolvereid, 2007; Webster and Kontkanen, 2021); and iv) marital status, with the influence of partners, children, or dependents and household size (Gluzmann, Jaume and Gasparini, 2012; Mendoza et al., 2021; Serrano Orellana, Pacheco Molina and Barriga Arizabala, 2017).

The third dimension focuses on socioeconomic factors, considered the most influential in the decision to undertake I entrepreneurship (Contreras Torres et al., 2017; León Mendoza, 2017; Navarrete Fonseca, 2019; Rocha Jácome and Giraldo Gómez, 2015). Society faces multiple problems that, once analyzed, can be solved through innovative entrepreneurial ventures (Ibarvo Urista, Quijano Vega and Loya Olivas, 2018). León Mendoza (2017) mentions that living conditions and poverty stimulate economic models that influence the decision to create a business.

The indicators in this category include: age, with studies indicating that people over 25 years old tend to undertake entrepreneurship more than younger individuals (Oelckers, 2015; Ortega-Lapiedra, 2020); gender, where women show a greater propensity to undertake entrepreneurship (Figuerola Ferretti Garrigues, Aracil Jordá and Infante Infante, 2022; Gutiérrez Rodríguez, Winkler Benítez and Campos Sánchez, 2021); geographical location, with people responding to local needs (León Mendoza, 2017;Torres Marín, González Rodrigo and Bordonado Bermejo, 2019); socio-cultural environment, which can favor or hinder entrepreneurship (Contreras Torres et al., 2017; Krueger, Reilly and Carsrud, 2000; Mancilla and Amorós, 2012) salary, which may not cover basic needs, prompting the search for additional income (León Mendoza, 2017; Torres Marín, González Rodrigo and Bordonado Bermejo, 2019); and the household, as a key motivator for improving quality of life (Gholami and Tahoo, 2021 ; Kautonen, Kibler and Minniti, 2017; Zahra and Wright, 2016).

The fourth dimension encompasses psychological factors, including several indicators. The literature establishes a strong relationship between entrepreneurial intentions and motivation (Bravo García et al., 2021). Adequate motivation balances emotions and responsibility, allowing goals and objectives to be achieved (Alzate Rodríguez and Bravo Santacruz, 2018; Bravo García et al., 2021; Morán Astorga and Menezes dos Anjos, 2016). However, motivation is difficult to quantify, so various asymmetric traits are identified among university students: a) risk aversion, b) uncertainty, c) decision-making, d) creativity and innovation, and e) emotional intelligence.

Regarding risk, individuals may choose to face or avoid high risk (da Silva, 2014), with a general fear of failure (Ferrándiz, Conchado and García-Martínez, 2021). Entrepreneurs with knowledge in financial, economic, political, or business areas tend to take calculated risks (Benítez Aguilar and Riveros Paredes, 2022), aware of a 50% probability of success (Rocha Jácome and Giraldo Gómez, 2015). Uncertainty, a relevant characteristic in entrepreneurship, makes university students overanalyze future situations, generating doubts (Bridge, 2021; Rocha Jácome and Giraldo Gómez, 2015).

Decision-making, discussed in the third point, requires strong will (Lozano Frutos, 2014), and having group support is crucial (Ajzen 1991; Lozano Frutos, 2014; Rocha Jácome and Giraldo Gómez, 2015). Creativity and innovation, essential for entrepreneurs (McGee et al., 2009; Mueller and Thomas, 2001 ; Popescu et al., 2016) are influenced by personality and the ability to perceive and apply external factors (Zahra and Wright, 2016). Finally, emotional intelligence is crucial for managing various situations and emotions, adapting to carry out ideas and projects (González Sierra, 2015; Morán Astorga and Menezes dos Anjos, 2016; Orozco Castro and Chavarro-Bohórquez, 2008).

To illustrate the exercise of operationalizing these dimensions and their subcategories, a Table 2 was prepared, organizing each dimension, its indicators, the guiding question, and the key criteria that must be considered for the subsequent analysis of the data collected with the project's instruments. The results of these analyses can be reviewed in the works of Imbachi Quinayas (2023), Ramírez Maya, Tierradentro and Londoño-Cardozo (2023) and Londoño-Cardozo, Maldonado Vásquez and Taype Huaman (2024), among others.

Table 2 Operationalization of variables in the case of the decision be an entrepreneur in university students 

Source: Own elaboration based on Lemos Bernal and Londoño-Cardozo (2024) and Lemos Bernal (2022)

2. Conclusions

The operationalization of qualitative data types is a social research method that provides an alternative for studying social phenomena that have been independently examined. The strength of this method lies in its ability to combine different analytical perspectives within a single study and to interpret qualitative data using quantitative techniques.

This approach considers one of the discussed assumptions. The reality of research continuously blurs methodological traditions and necessitates the creation of new alternatives to address the complexities of its subject matter. This aligns with epistemological anarchist perspectives, which assert that scientific research is not linear nor bound to strict rules. Research, in essence, has two modes of existence: order - within the frameworks institutionalized by research communities -and chaos - for change, revolutions, heuristic processes, and the creation of methodologies. Therefore, research, particularly in its evolutionary changes and revolutions, must dare to look beyond the established norms in accordance with the complexity of its objects of study and the need to forge new paths for knowledge.

Although this method can be essential for holistic, transdisciplinary, and interdisciplinary methodological approaches, certain limitations must be considered.The potential to establish an indeterminate number of dimensions does not guarantee that all characteristics of the phenomenon will be covered. Consequently, social phenomena can never be studied comprehensively. Additionally, operationalizing these phenomena may lead to a loss of conceptual richness. However, it achieves precision aligned with the interests of the research.

Furthermore, this method is particularly suitable for application in formative research. The experience gained from this research project suggests that, for students, it is relatively easy to identify the dimensions of these complex phenomena from the literature, even if their measurement is challenging. Thus, establishing a solid foundation that enables them to effectively execute their projects and achieve their objectives facilitates their work and motivates them to delve deeper into the study of these phenomena. Nevertheless, it is important to recognize that this method is also useful, and indeed should be utilized by experienced researchers when they wish to quantitatively analyze complex phenomena, such as business decision-making or expert opinions on various topics.

References

1. AJZEN, Icek. The theory of planned behavior. Organizational Behavior and Human Decision Processes. 1991, vol. 50, no. 2. https://doi.org/10.1016/0749-5978(91)90020-TLinks ]

2. ALZATE RODRIGUEZ, F.; BRAVO SANTACRUZ, M.E., Aproximaciones sobre las motivaciones y las características del perfil emprendedor. Tesis Maestría en Dirección Empresarial. Cali: Universidad Santiago de Cali. 2018. [ Links ]

3. ARENAS-GARCÍA, Lorea. Constructing and validating an instrument for comparing national criminal justice policies. In: Revista Criminalidad. 2021. vol. 63, no. 3 https://doi.org/10.47741/17943108.313Links ]

4. BENITEZ AGUILAR, Dahiana Ayelen; RIVEROS PAREDES, Selva Eliana. El potencial emprendedor en los egresados universitarios. In: Ciencia Latina Revista Científica Multidisciplinar. 2022. vol. 6, no. 2, https://doi.org/10.37811/cl_rcm.v6i2.1868Links ]

5. BOURDIEU, Pierre; CHAMBOREDON, Jean-Claude; PASSERON, Jean-Claude. El oficio de sociólogo. Presupuestos epistemológicos. Primera ed. Buenos Aires, Argentina: Siglo Veintiuno Editores.2002 http://www.op-edu.eu/media/El_oficio_de_sociologo_Bourdieu_Passeron.pdfLinks ]

6. BRAVO GARCÍA, Saulo; ARAQUE JARAMILLO, Wilson; MARTÍNEZ LIZARRALDE, Mercedes; ARGÜELLO SALAZAR, Andrés; MERA PORRAS, Juan David; LONDOÑO-CARDOZO, José. Comparativo de la actitud emprendedora entre estudiantes de dos organizaciones de Educación Superior: UNICUCES de Colombia y Andina Simón Bolívar de Ecuador. En: LONDOÑO-CARDOZO, J.; SALCEDO SERNA, M.A.; CIFUENTES LEITON, D.M. (eds.), Emprendimiento y Universidad: giros y desafíos de una relación problemática. Primera ed. Cali: Editorial Universidad Santiago de Cali, pp. 291317. 2021. https://dialnet.unirioja.es/servlet/articulo?codigo=8433857Links ]

7. BRIDGE, Simon. 2021. Facing uncertainty: An entrepreneurial view of the future? In: Journal of Management & Organization. 2021 vol. 27, no. 2. https://10.1017/jmo.2018.65Links ]

8. BUNGE, Mario. Las Ciencias Sociales en discusión. Una perspectiva filosófica. Buenos Aires: Editorial Sudamericana. 1999 [ Links ]

9. BUNGE, Mario. La investigación científica. Su estrategia y su Filosofía. Tercera Edición. México: Siglo veintiuno editores. 2004 [ Links ]

10. CASTORIADIS, Cornelius. La institución imaginaria de la sociedad. México: Tusquets Editores. Fábula. 2013 ISBN 978-607-421-460-4. [ Links ]

11. CEA D'ANCONA, María Ángeles. Metodología cuantitativa: estrategias y técnicas de investigación social. Tercera reimpresión. España: Síntesis. 2001. [ Links ]

12. CHEN, Chao C.; GREENE GREENE, Patricia; CRICK, Ann. Does entrepreneurial self-efficacy distinguish entrepreneurs from managers? In: Journal of Business Venturing. 1998 vol. 13, no. 4. https://doi.org/10.1016/S0883-9026(97)00029-3Links ]

13. CHICAÍZA-BECERRA, Liliana Alejandra; RIAÑO CASALLAS, M.I., ROJAS-BERRIO, Sandra Patricia, GARZÓN SANTOS, C. Revisión sistemática de literatura en Administración. junio 2017. Rochester, NY: Facultad de Ciencias Económicas. Centro de Investigaciones para el Desarrollo - CID. 2017 https://papers.ssrn.com/so13/papers.cfm?abstract_id=3011931. [ Links ]

14. CONTRERAS TORRES, Francoise; ESPINOSA MÉNDEZ, Juan Carlos; SORIA BARRETO, Karla; PORTALANZA CHAVARRÍA, Alexandra; JÁUREGUI MACHUCA, Kety; OMAÑA GUERRERO, Jesús Alfonso. Intención de emprendimiento en estudiantes de cinco países latinoamericanos y su relación con liderazgo, propensión al riesgo y locus de control. In: International Journal of Psychological Research. 2017. vol. 10, no. 2. https://www.metarevistas.org/Record/94la553d95f986clc59eelaacd9cbb46/DescriptionLinks ]

15. DA SILVA Jackson André. Neuroemprendimiento: ¿Es la toma de riesgo una característica emprendedora? - Repositorio Institucional de Documentos. Trabajo final de Máster Universitario en Gestión de las Organizaciones. Zaragoza, España: Universidad de Zaragoza. 2024 https://zaguan.unizar.es/record/30735. [ Links ]

16. DAGNINO S, Jorge. Tipos de datos y escalas de medida. Revista Chilena de Anestesia. 2014. vol. 43. https://doi.org/10.25237/revchilanestv43n02.06Links ]

17. DETTORI, Joseph R; NORVELL, Daniel C. The Anatomy of Data. In: Global Spine Journal. 2018 vol. 8, no. 3. https://10.1177/2192568217746998. [ Links ]

18. DÍEZ, José A.; MOULINES, Carlos Ulises. Fundamentos de Filosofía de la Ciencia. Primera. Barcelona: Ariel S.A. 1997 ISBN 84-344-8745-4. [ Links ]

19. ESCOBAR-PÉREZ, Jasmine; CUERVO-MARTÍNEZ, Ángela Validez de contenido y juicio de expertos: una aproximación a su utilización. En: Avances en medición. 2008. vol. 6, no. 1. https://dialnet.unirioja.es/servlet/articulo?codigo=2981181Links ]

20. ESTRIN, Saul; MICKIEWICZ, Tomasz ; STEPHAN, Ute. Human capital in social and commercial entrepreneurship. In; Journal of Business Venturing. 2016. vol. 31, no. 4. https://doi.org/10.1016/j.jbusvent.2016.05.003Links ]

21. FERRÁNDIZ, J., CONCHADO, A.; GARCÍA-MARTÍNEZ, G. Caracterización del perfil individual y Empresarial de la actividad emprendedora agraria. En: GARCÍA RODRÍGUEZ, F.J.; GIL SOTO, E.; GUTIÉRREZ TAÑO, D.; RUIZ DE LA ROSA, C.I. (eds.), El emprendimiento ante las crisis. S.l.: Fundación General de la Universidad de La Laguna, pp. 41-46. 2021 [ Links ]

22. FEYERABEND, Paul K. Tratado contra el método: esquema de una teoría anarquista del conocimiento. Madrid, España: Tecnos. 1975 [ Links ]

23. FIGUEROLA FERRETTI GARRIGUES, Isabel Catalina,;ARACIL JORDÁ, Jorge; INFANTE INFANTE, Juan. Emprendimiento y brecha de género un mapa para el caso español. In: Repositorio Comillas, Universidad Pontificia. 25 abril 2022. https://repositorio.comillas.edu/xmlui/handle/11531/67823. [ Links ]

24. GARCÍA MOLINA, M.; CHICAÍZA-BECERRA, L. Guía de fuentes para la investigación en Ciencias Económicas [en línea]. 21 febrero 2011. S.l.: Facultad de Ciencias Económicas. Centro de Investigaciones para el Desarrollo - CID. https://doi.org/10.2139/ssrn.1766062. [ Links ]

25. GHOLAMI, Maryam; TAHOO, Lameea Al. Investigating the Influence of Entrepreneurship on Entrepreneur's Life. In: International Journal of Business Ethics and Governance. 2021 https://10.51325/ijbeg.v4i2.67. [ Links ]

26. GLUZMANN, Pablo; JAUME, David; GASPARINI, Leonardo. Decisiones laborales en América Latina: el caso de los emprendedores. En: Econstor. 2012. https://www.econstor.eu/bitstream/10419/127648/1/cedlas-wp-137.pdfLinks ]

27. GONZÁLEZ BLASCO, Pedro. Medir en las ciencias sociales. En: GARCÍA FERRANDO, Manuel; IBÁÑEZ, Jesús; ALVIRA, Francisco. El análisis de la realidad social Métodos y técnicas de investigación. Primera ed. Madrid, España: Alianza Editorial, pp. 209-268. 1986 [ Links ]

28. GONZÁLEZ ROJAS, Jorge Enrique. Fundamentación hermenéutica del análisis cultural. En: J.E. GONZÁLEZ, Análisis cultural hermenéutico. Aportes de la hermenéutica analógica-icónica al Análisis cultural. Buenos Aires: Círculo Hermenéutico. 2016. Serie Pensamiento analógico, 8, pp. 79-110. [ Links ]

29. GONZÁLEZ SIERRA, Juan Antonio. Influencia de emprendedores en la propensión emprendedora de universitarios para la creación de empresas. Caso: Empresa de alimentos saludables. En: Revista de Psicología y Ciencias del Comportamiento de la U.A.C.J.S. 2015. vol. 6, no. 2. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/2710Links ]

30. GUTIÉRREZ RODRÍGUEZ, Lizbeth Estefanía; WINKLER BENÍTEZ, Kurt Tonatiuh; CAMPOS SÁNCHEZ, Alejandro. Comportamientos socio culturales y el género como factores clave para el espíritu emprendedor, un análisis al GEM. En: Repositorio de la Red Internacional de Investigadores en Competitividad. 2021. [ Links ]

31. HOSSAIN, Uzzal. Relationship between Individual Characteristics and Social Entrepreneurial Intention: Evidence from Bangladesh. In: Business and Economics Research Journal. 2021. vol. 12, no. 2, https://10.20409/berj.2021.328Links ]

32. IBARVO URISTA, Virginia; QUIJANO VEGA, Gil Arturo; LOYA OLIVAS, Elier Mitchell. Actitud hacia el emprendimiento social en los alumnos del Instituto Tecnológico de Chihuahua, como respuesta a una problemática nacional. Desigualdad regional, pobreza y migración. México: Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional A.C, Coeditores. 2018 https://ru.iiec.unam.mx/3889/Links ]

33. IMBACHI QUINAYAS, Eddy Johana. Características de propensión al emprendimiento de estudiantes de UNIMINUTO. Trabajo de Grado para optar al título de Contaduría pública. Cali: Corporación Universitaria Minuto de Dios - UNIMINUTO . 2023 https://repository.uniminuto.edu/handle/10656/18641. [ Links ]

34. JOHANSSON, EDVARD. Self-employment and the predicted earnings differential - evidence from Finland. In: Finnish Economic Papers. 2000. vol. 13, no. 1. https://ideas.repec.org/a/fep/journl/v13y2000ilp45-55.htmlLinks ]

35. KARA, H. Qualitative data analysis. En: H. KARA, Research and Evaluation for Busy Students and Practitioners. Bristol. UK: Policy Press, pp. 187-202. 2023 ISBN 978-1-4473-6626-3. [ Links ]

36. KAUTONEN, Teemu; KIBLER, Ewald; MINNITI, María. Late-career entrepreneurship, income and quality of life. In: Journal of Business Venturing. 2017, vol. 32, no. 3. https://10.1016/j.jbusvent.2017.02.005. [ Links ]

37. KRUEGER JR, Norris F.; REILLY, Michael D.; CARSRUD, Alan L. Competing models of entrepreneurial intentions. In: Journal of Business Venturing. 2000 vol. 15, no. 5, https://doi.org/10.1016/S0883-9026(98)00033-0Links ]

38. LALLA, M Michele. Fundamental characteristics and statistical analysis of ordinal variables: a review. In: Quality & Quantity. 2017. vol. 51, no. 1. https://doi.org/10.1007/sl1135-016-0314-5Links ]

39. LEMOS BERNAL, R.J. Dimensiones del emprendimiento en los estudiantes universitarios. Trabajo de Grado para optar al título de tecnología en gestión empresarial. Cali: Corporación Universitaria Minuto de Dios - UNIMINUTO. 2022 [ Links ]

40. LEMOS BERNAL, Ricardo J; LONDOÑO-CARDOZO, José. La decisión de emprender: dimensiones y características para su análisis en estudiantes universitarios. En: Revista Ensayos. 2024. vol. 13. https://revistas.unal.edu.co/index.php/ensayos/article/view/113807Links ]

41. LEÓN MENDOZA, Juan Celestino. Influencias de las características sociodemográficas individuales en la creación de negocios en Perú. Semestre Económico. 2017, vol. 20, no. 43 https://10.22395/seec.v20n43a2. [ Links ]

42. LONDOÑO-CARDOZO, José; MALDONADO VÁSQUEZ, M.A.; TAYPE HUAMAN, I. Decoding Entrepreneurial Minds: Key Factors Influencing Entrepreneurial Decisions of University Students. A Case Study at a Colombian University. In: Revista Hallazgos. 2024. vol. 22, [ Links ]

43. LÓPEZ-ROLDÁN, Pedro. La construcción de tipologías: metodología de análisis. In: Papers: revista de sociología, 1996. no. 48. https://doi.org/10.5565/rev/papers.1811Links ]

44. LÓPEZ-ROLDÁN, Pedro; FACHELLI, Sandra. Metodología de la investigación social cuantitativa. Barcelona: Universitat Autónoma de Barcelona. 2015 https://ddd.uab.cat/pub/caplli/2016/163564/metinvsoccua_a2016_capl-2.pdfLinks ]

45. LOZANO ARDILA, M.C. Los procesos de triangulación como estrategias de investigación en las ciencias sociales y humanas. En: P. PÁRAMO BERNAL (ed.), La recolección de información en las ciencias sociales: una aproximación integradora. Primera ed. Bogotá: Lemoine Editores.2017. ISBN 978-958-9130-05-6. [ Links ]

46. LOZANO FRUTOS, Ángel. Características personales y culturales de los emprendedores potenciales y su influencia en el autoempleo [en línea]. Tesis para optar al título de Doctor en Psicología Social y Antropología de las Organizaciones. Salamanca, España: Universidad de Salamanca. 2014. https://gredos.usal.es/handle/10366/125442. [ Links ]

47. MALDONADO MANZANO, Rosa Leonor; MANACES ESAUD, G.S. ; PIÑAS PIÑAS, Luis. Fernando. Indeterminate Likert Scale in Social Sciences Research. In: International Journal of Neutrosophic Science.2022 vol. 19, no. 1, https://doi.org/10.54216/IJNS.190125. [ Links ]

48. MANCILLA, Claudio; ERNESTO AMORÓS, José. La influencia de factores socio-culturales en el emprendimiento, evidencia en Chile 2007-2010. In: Multidisciplinary Business Review. 2012. vol. 5, no. 1. https://journalmbr.net/index.php/mbr/article/view/371 . Acesso em: 29 jun. 2024. [ Links ]

49. MARDONES, J.M. Filosofía de las ciencias humanas y sociales: nota histórica de una polémica incesante. En: J.M. MARDONES, Filosofía de las ciencias humanas y sociales: materiales para una fundamentación científica. Barcelona: Anthropos Editorial, pp. 19-57. vol. 1. 2015 ISBN 84-7658-314-1. [ Links ]

50. MARTÍNEZ RUÍZ, H. ; BENÍTEZ ONTIVEROS, L. Metodología de la Investigación social I. México: Cengage Learning Editores. 2016 [ Links ]

51. MCGEE, J.E.; PETERSON, M.; MUELLER, S.L.; SEQUEIRA, J.M. Entrepreneurial Self-Efficacy: Refining the Measure. In: Entrepreneurship Theory and Practice. 2009. vol. 33, no. 4. https://doi.org/10.1111/j.1540-6520.2009.00304.x.Links ]

52. MENDOZA, G.; LLOPIS, J.; GASCO, J.; GONZALEZ, R. Entrepreneurship as seen by entrepreneurs in a developing country. In: Journal of Business I Research. 2021. vol. 123. https://doi.org/10.1016/j.jbusres.2020.10.038. [ Links ]

53. MERTON, R.K. Teoría y estructuras sociales. 4 reimpresión. México: Fondo de Cultura Económica. 2022 [ Links ]

54. MINISTERIO DE EDUCACIÓN NACIONAL. La cultura del emprendimiento en los establecimientos educativos. Primera ed. Bogotá: Ministerio de Educación Nacional. 2011 ISBN 978-958-691-402-4. [ Links ]

55. MORÁN ASTORGA, Consuelo; MENEZES DOS ANJOS, Esther. La motivación de logro como impulso creador de bienestar: su relación con los cinco grandes factores de la personalidad. In: International Journal of Developmental and Educational Psychology. 2016. vol. 2, no. 1, https://doi.org/10.17060/ijodaep.2016.n1.v2.292. [ Links ]

56. MUELLER, S.L.; THOMAS, A.S. Culture and entrepreneurial potential: A nine country study of locus of control and innovativeness. In: Journal of Business Venturing. 2001 vol. 16, no. 1, https://doi.org/10.1016/S0883-9026(99)00039-7. [ Links ]

57. NAVARRETE FONSECA, A.E. Un modelo logit para determinar la propensión emprendedora de los empresarios en la provincia de Tungurahua [en línea]. Proyecto de Investigación, previo a la obtención del Título de Economista. Ambato, Ecuador: Universidad Técnica de Ambato. 2019 https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/29424. [ Links ]

58. NORTH, D.C. Instituciones, cambio institucional y desempeño económico. Tercera reimpresión. México: Fondo de Cultura Económica . 2006 ISBN 968-16-3982-0. [ Links ]

59. OELCKERS, F. Emprendimiento en la Tercera Edad: Una Revisión de la Situación Actual. In: Journal of technology management & innovation. 2015. vol. 10, no. 3. https://doi.org/10.4067/S0718-27242015000300015. [ Links ]

60. OROZCO CASTRO, Luis Antonio; CHAVARRO BOHÓRQUEZ, Diego Andrés. Universidad y Emprendimiento. 2008 Hallazgos, no. 10. https://www.redalyc.org/articulo.oa?id=413835171006Links ]

61. ORTEGA-LAPIEDRA, R. Why Senior Workers Are Becoming Entrepreneurs: Necessity or Passion? En: A. CAPUTO; M. M. PELLEGRINI (eds.), The Entrepreneurial Behaviour: Unveiling the cognitive and emotional aspect of entrepreneurship [en línea]. S.l.: Emerald Publishing Limited, pp. 271-280. Entrepreneurial Behaviour Series. 2020. https://doi.org/10.1108/978-1-78973-507-920201018Links ]

62. POPESCU, C.C., BOSTAN, I., ROBU, I.-B., MAXIM, A.; DIACONU (MAXIM), L. An Analysis of the Determinants of Entrepreneurial Intentions among Students: A Romanian Case Study. Sustainability. 2016. vol. 8, no. 8. https://doi.org/10.3390/su8080771. [ Links ]

63. POSCHKE, Marcus. 'Entrepreneurs out of necessity: a snapshot. In: Applied Economics Letters. 2013a vol. 20, no. 7 https://doi.org/10.1080/1350485 1.2012.727968. [ Links ]

64. POSCHKE, Marcus. Who becomes an entrepreneur? Labor market prospects and occupational choice. In: Journal of Economic Dynamics and Control. 2013b. vol. 37, no. 3. https://doi.org/10.1016/j.jedc.2012.11.003. [ Links ]

65. RAMÍREZ MAYA, Y.A.; TIERRADENTRO, A.Z.; LONDOÑO-CARDOZO, J. Factores que influyen en la decisión de emprender en estudiantes universitarios. Análisis de la opinión de expertos. XI Encuentro Regional de Semilleros de investigación y VII Encuentro Internacional de Grupos y Semilleros de Investigación. La Investigación, la Innovación y la Creación: Un Escenario para la Construcción de Paz, Inclusión y Diálogo Intercultura. Universidad Santiago de Cali, Palmira: ACIET, 2023 [ Links ]

66. ROCHA JÁCOME, William Hernando; GIRALDO GÓMEZ, Gilberto De Jesús. Propensión a asumir riesgos, tomar decisiones y tolerar la incertidumbre en los emprendedores de Valledupar. In: Revista Investigium IRE Ciencias Sociales y Humanas. 2015. vol. 6, no. 2. https://investigiumire.unicesmag.edu.co/index.php/ire/article/view/97Links ]

67. RODRÍGUEZ MEDINA, Manuel Arnoldo; POBLANO-OJINAGA, Eduardo Rafael; ALVARADO TARANGO, Lizette; GONZÁLEZ TORRES, Arturo; RODRÍGUEZ BORBÓN, Manuel Iván. Validación por juicio de expertos de un instrumento de evaluación para evidencias de aprendizaje conceptual. RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo. 2021. vol. 11, no. 22. https://doi.org/10.23913/ride.v11i22.960, [ Links ]

68. SALCEDO SERNA, M.A. La vergüenza identitaria territorial como factor motivacional de proyectos migratorios trasnacionales voluntarias en ciudadanos colombianos [en línea]. Tesis para optar al título de doctor en psicología. Madrid: Universidad Autónoma de Madrid. 2021 https://repositorio.uam.es/handle/10486/696717Links ]

69. SALCEDO SERNA, M.A.; LONDOÑO-CARDOZO, J.; GAITÁN VERA, B. El papel de las formaciones técnicas previas en el emprendimiento laboral de las nuevas generaciones de egresados de programas de Administración. En: J. LONDOÑO-CARDOZO, M.A. SALCEDO SERNA and D.M. CIFUENTES LEITON (eds.), Emprendimiento y Universidad: giros y desafíos de una relación problemática. Primera ed. Cali: Editorial Universidad Santiago de Cali , pp. 29-70. 2021 [ Links ]

70. SÁNCHEZ SÁNCHEZ, Pedro José. Modelos para la combinación de preferencias en toma de decisiones: herramientas y aplicaciones [en línea]. Tesis para optar al título de doctor en ingeniería informática. Granada: Universidad de Granada. 2007 http://150.214.191.180/Documentos/tesis_dpto/105.pdfLinks ]

71. SCHLAEGEL, C. and KOENIG, M. Determinants of Entrepreneurial Intent: A Meta-Analytic Test and Integration of Competing Models. In: Entrepreneurship Theory and Practice. 2014. vol. 38, no. 2. https://doi.org/10.1111/etap.12087. [ Links ]

72. SEARLE, John. La construcción de la realidad social. Primera ed. España: Paidós. Paidós Básica, 85p. 1997 ISBN 84-493-0421-0. [ Links ]

73. SERRANO ORELLANA, B.; PACHECO MOLINA, A.; BARRIGA ARIZABALA, J. Determinantes de la propensión a emprender y del éxito en los emprendimientos. II Congreso internacional Ciencia y Tecnología [en línea]. S.l.: Universidad Técnica de Machala, pp. 513-524. 2017 vol. 1. http://investigacion.utmachala.edu.ec/proceedings/index.php/utmach/article/view/149. [ Links ]

74. TORRES MARÍN, A.J.; GONZÁLEZ RODRIGO, E.; BORDONADO BERMEJO, M. J. El impacto de la crisis económica (2008-2013) sobre el perfil de los nuevos trabajadores autónomos según su nacionalidad: una aproximación a través de la muestra continua de vidas laborales. In: REVESCO: revista de estudios cooperativos. 2019. no. 131. https://doi.org/10.5209/REVE.63559. [ Links ]

75. TORRES-ORTEGA, J.; CAMPOS, J.L.M. Futuras intenciones de emprender en estudiantes de estudios secundarios chilenos y vascos. In: CIRIEC-España, revista de economía pública, social y cooperativa.2021 no. 103. https://doi.org/10.7203/CIRIEC-E.103.20933. [ Links ]

76. VARGAS FRANCO. Estadística descriptiva para ingeniería ambiental con SPSS. Primera ed. Cali: Universidad Nacional de Colombia. 2007. ISBN 978-958-33-9319-3. [ Links ]

77. VILLARREAL-ÁLVAREZ, M.A. ; ROQUE-HERNÁNDEZ, R.V. El apoyo educativo para el emprendimiento y su relación con las intenciones emprendedoras de los estudiantes universitarios. RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo 2022. vol. 13, no. 25. https://doi.org/10.23913/ride.v13i25.1273. [ Links ]

78. VINOGRADOV, E. and KOLVEREID, L. Cultural background, human capital and self-employment rates among immigrants in Norway. In: Entrepreneurship & Regional Development. 2007. vol. 19, no. 4. https://doi.org/10.1080/08985620701223213. [ Links ]

79. WEBSTER, N.A. and KONTKANEN, Y. Space and place in immigrant entrepreneurship literature in the Nordic countries: A systematic literature review. In: Norsk Geografisk Tidsskrift - Norwegian Journal of Geography. 2021. vol. 75, no. 4. https://doi.org/10.1080/0029195l.2021.1949746. [ Links ]

80. WILLIAMSON, O. Las Instituciones económicas del Capitalismo. Primera. México: Fondo de Cultura Económica. Colección Economía. 1989 ISBN 978-968-16-3132-1. [ Links ]

81. ZAHRA, Shaker A.; WRIGHT, Mike. Understanding the Social Role of Entrepreneurship. In: Journal of Management Studies. 2016 . vol. 53, no. 4. https://doi.org/10.1111/joms.12149. [ Links ]

*This is an Open Access article under the BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/) Published by Universidad Libre - Cali, Colombia

Funding sources: This article is part of the results from the research project titled Análisis de las variables características de propensión al emprendimiento de los estudiantes UNIMINUTO de la rectoría Suroccidente - RSO with internal code C121-620-003 financed by the Corporación Universitaria Minuto de Dios - UNIMINUTO, Rectoría Centro Occidente in the city of Cali.

How to cite this article/Cómo citar este artículo: LONDOÑO-CARDOZO, José; PINEDA-HENAO, Elkin Fabriany. Methodological construction for the analysis of social phenomena: case of entrepreneurial decisions in university students. In: Entramado. July-December, 2024 vol. 20, no. 2, e-10556 p. 1-13 https://doi.org/10.18041/1900-3803/entramado.2.10566

Received: November 18, 2023; Revised: January 18, 2023; Accepted: March 28, 2024

• Author 1: Writing - original draft, translation, and methodology

• Author 2: Conceptualization and writing - review and editin

Conflict of interest

The authors declare that they have no conflict of interest.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License